Abstract:
Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
Abstract:
PROBLEM TO BE SOLVED: To integrate a step move element adjacent to a deep trench capacitor by arranging an FET on one portion of the deep trench capacitor in a substrate, and providing an insulation region with a larger depth than the FET while surrounding the FET. SOLUTION: An FET is arranged on one portion of a deep trench capacitor 13 in a substrate, a travel element gate 17 is arranged on one portion of the deep trench capacitor 13 in the FET, and an n+ diffusion region 23 being separated from the travel element gate 17 by the insulation layer is formed adjacent to the side part of the travel element gate 17. Also, an isolation region 15 being insulated from the travel element gate 17 of the FET is arranged on one portion of the deep trench capacitor that is not covered with the FET, surrounds the FET and is located in the substrate, thus forming a larger depth than the FET and hence integrating the step travel element adjacent to the deep trench capacitor 13.
Abstract:
PROBLEM TO BE SOLVED: To provide a gate formation method capable of controlling the gate length of a self-aligned wrap-around type field effect transistor easily, accurately, and securely. SOLUTION: A reference edge in the vertical direction is determined by forming a cavity in an silicon on insulator (SOI) structure having an embedded silicon island 108. In order to securely carry out an etch back, the reference edge is used in two etch back stages. In the first etch back, part of oxide layer corresponding to a first distance is removed and then, a gate conductive material is applied thereon. In the second etch back, part of the gate conductive material corresponding to a second distance is removed. The difference between the first distance and the second distance determines the final gate length of a device. After the oxide layer is peeled off and removed, gate electrodes 904 and 906 in the vertical direction surrounding the embedded silicon island 108 appear at all four sides. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method for selecting semiconducting carbon nanotubes from a random collection of conducting and semiconducting carbon nanotubes synthesized on a plurality of synthesis sites carried by a substrate and structures formed thereby. SOLUTION: After an initial growth stage, synthesis at synthesis sites is interrupted and specific synthesis sites bearing conducting carbon nanotubes are altered so as to halt lengthening of the conducting carbon nanotubes. Synthesis sites bearing semiconducting carbon nanotubes are unaffected by the alteration, so that semiconducting carbon nanotubes can be lengthened to a greater length than the conducting carbon nanotubes. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a memory cell structure without gate leak current, and an activation method thereof. SOLUTION: The structure includes (a) a substrate, (b) first and second electrode regions 610, 1120 on the substrate, and (c) a third electrode region 1110 arranged between the first electrode region and the second electrode region. When a first write voltage potential is applied between the first electrode and the third electrode region, in response thereto, the third electrode region changes the shape of its own and then, when a predetermined read voltage potential is applied between the first electrode region and the third electrode region, in response thereto, a sense current flows between the first electrode region and the third electrode region. Further, when a second write voltage potential is applied between the second electrode region and the third electrode region, in response thereto, no sense current flows between the first electrode region and the third electrode region. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a device which can minimize ripples and turbulence associated with the energy transfer between the movement of a lens and a liquid environment. SOLUTION: An apparatus for immersion optical lithography has a lens capable of relative movement in synchronization with horizontal motion of a semiconductor wafer in a liquid environment. The synchronized movements of the lens apparatus and the semiconductor wafer advantageously reduce turbulence and air bubbles associated with the liquid environment. The relative motions of the lens and the semiconductor wafer are performed almost simultaneously with a scanning process, resulting in optimal image resolution with minimal air bubbles, turbulence, and disruption in the liquid environment. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method for synthesizing carbon nanotubes and a structure formed by the carbon nanotubes. SOLUTION: A method for synthesizing the carbon nanotubes includes a step for forming carbon nanotubes on a plurality of synthesis sites supported by a first substrate, a step for interrupting nanotube synthesis, a step for mounting a free end of each carbon nanotube onto a second substrate, and a step for removing the first substrate. Each carbon nanotube is capped by one of the synthesis sites, to which growth reactants have ready access. As the carbon nanotubes lengthen during resumed nanotube synthesis, access to the synthesis sites remains unoccluded. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
Disclosed is a process for forming a film comprising a polysilane composition on a substrate. The film is formed by vapor deposition directly on a substrate, thus avoiding the cumbersome steps ordinarily encountered in preparing and applying polysilanes by conventional spin application techniques. The film is used in a lithographic process for forming an image on a substrate.