Abstract:
A method of formation of a deep trench vertical transistor is provided. A deep trench with a sidewall in a doped semiconductor substrate is formed. The semiconductor substrate includes a counterdoped drain region in the surface thereof and a channel alongside the sidewall. The drain region has a top level and a bottom level. A counterdoped source region is formed in the substrate juxtaposed with the sidewall below the channel. A gate oxide layer is formed on the sidewalls of the trench juxtaposed with a gate conductor. Perform the step of recessing the gate conductor below the bottom level of the drain region followed by performing angled ion implantation at an angle theta+delta with respect to vertical of a counterdopant into the channel below the source region and performing angled ion implantation at an angle theta with respect to vertical of a dopant into the channel below the source.
Abstract:
Body effects in vertical MOSFET transistors are considerably reduced and other device parameters are unaffected in a vertical transistor having a threshold implant with a peak at the gate and an implant concentration distribution that declines rapidly away from the gate to a plateau having a low p-well concentration value. A preferred embodiment employs two body implants-an angled implant having a peak at the gate that sets the Vt and a laterally uniform low dose implant that sets the well dopant concentration.
Abstract:
An apparatus and method for wordline voltage compensation in integrated memories is provided, where the apparatus includes an array threshold voltage ("VT") monitor, a wordline on voltage ("Vpp") generator in signal communication with the threshold voltage monitor for providing a wordline on voltage responsive to a change in the monitored array threshold voltage, and a wordline off voltage ("VWLL") generator in signal communication with the threshold voltage monitor for providing a wordline off voltage responsive to a change in the monitored array threshold voltage; and where the corresponding method for compensating each of a wordline on signal and a wordline off signal in correspondence with an array threshold signal includes monitoring an array threshold signal, generating a wordline on signal responsive to the monitored array threshold signal, and generating a wordline off signal responsive to the monitored array threshold signal.