Abstract:
A structure for conducting carriers and method for forming is described incorporating a single crystal substrate of Si or SiGe having an upper surface in the and a psuedomorphic or epitaxial layer of SiGe having a concentration of Ge different than the substrate whereby the psuedomorphic layer is under strain. A method for forming semiconductor epitaxial layers is described incorporating the step of forming a psuedomorphic or epitaxial layer in a rapid thermal chemical vapor deposition (RTCVD) tool by increasing the temperature in the tool to about 600ºC and introducing both a Si containing gas and a Ge containing gas. A method for chemically preparing a substrate for epitaxial deposition is described comprising the steps of immersing a substrate in a series of baths containing ozone, dilute HF, deionized water, HC1 acid and deionized water, respectively, followed by drying the substrate in an inert atmosphere to obtain a substrate surface free of impurities and with a RMS roughness of less than 0.1 nm.
Abstract:
PROBLEM TO BE SOLVED: To provide a method for forming a semiconductor structure comprising different species of silicide or germanide positioned in different regions of the semiconductor structure. SOLUTION: The different species of silicide or germanide is formed on a semiconductor layer and/or a conductor layer. By this invention, by utilizing combination of continuous accumulation of different metals and pattern formation, the different silicide or germanide are formed in the different regions of a semiconductor chip. This method includes a step for providing a Si-including layer or a Ge layer having at least a first region and a second region, a step for forming a first silicide or germanide in one of the first region and the second region, and a step for forming a second silicide or germanide having different composition from the first silicide or germanide in the other region not including the first silicide or germanide. The steps for forming the first and second silicide or germanide are performed continuously or with a single step. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
Expitaxial substitutional solid solutions of silicon carbon (101 ) can be obtained by an ultra-fast anneal of an amorphous carbon-containing silicon material. The anneal is performed at a temperature above the recrystallization point, but below the melting point of the material and preferably lasts for less than 100 milliseconds in this temperature regime. The anneal is preferably a flash anneal or laser anneal. This approach is able to produce epitaxial silicon and carbon-containing materials (101 ) with a substantial portion of the carbon atoms at substitutional lattice positions. The approach is especially useful in CMOS processes and other electronic device manufacture where the presence of epitaxial Si1-yCy, y
Abstract:
A structure, and a method for fabricating the structure, for the isolation of electronic devices is disclosed. The electronic devices are processed in substrates comprising a SiGe based layer underneath a strained Si layer. The isolation structure comprises a trench extending downward from the substrate top surface and penetrating into the SiGe based layer, forming a sidewall in the substrate. An epitaxial Si liner is selectively deposited onto the trench sidewall, and subsequently thermally oxidized. The trench is filled with a trench dielectric, which protrudes above the substrate top surface.
Abstract:
An embedded silicon carbon (Si:C) having a substitutional carbon content in excess of one percent in order to effectively increase electron mobility by application of tension to a channel region of an NFET is achieved by overfilling a gap or trench formed by transistor gate structures with Si: C and polishing an etching the Si: C to or below a surface of a raised gate structure in a super-Damascene process, leaving Si:C only in selected regions above the transistor source and drain, even though processes capable of depositing Si: C with sufficiently high substitutional carbon content are inherently non-selective.
Abstract:
A structure for conducting carriers and method for forming is described incorporating a single crystal substrate of Si or SiGe having an upper surface in the and a psuedomorphic or epitaxial layer of SiGe having a concentration of Ge different than the substrate whereby the psuedomorphic layer is under strain. A method for forming semiconductor epitaxial layers is described incorporating the step of forming a psuedomorphic or epitaxial layer in a rapid thermal chemical vapor deposition (RTCVD) tool by increasing the temperature in the tool to about 600ºC and introducing both a Si containing gas and a Ge containing gas. A method for chemically preparing a substrate for epitaxial deposition is described comprising the steps of immersing a substrate in a series of baths containing ozone, dilute HF, deionized water, HC1 acid and deionized water, respectively, followed by drying the substrate in an inert atmosphere to obtain a substrate surface free of impurities and with a RMS roughness of less than 0.1 nm.
Abstract:
While embedded silicon germanium alloy and silicon carbon alloy provide many useful applications, especially for enhancing the mobility of MOSFETs through stress engineering, formation of alloyed suicide on these surfaces degrades device performance. The present invention provides structures and methods for providing unalloyed suicide on such silicon alloy surfaces placed on semiconductor substrates. This enables the formation of low resistance contacts for both mobility enhanced PFETs with embedded SiGe and mobility enhanced NFETs with embedded Si:C on the same semiconductor substrate. Furthermore, this invention provides methods for thick epitaxial silicon alloy, especially thick epitaxial Si:C alloy, above the level of the gate dielectric to increase the stress on the channel on the transistor devices.