Abstract:
The invention relates to a resonance converter for driving variable loads, wherein an input signal which is supplied by a switch (103) which is controlled by a control device (109) is initially converted into an output signal by a transformer (105). The dimensions and circuitry of the transformer (105) are such that the transformation ratio between the input signal and output signal ranges from 5:1 to 100:1 when nominal power is supplied to the variable load (107). The switching frequency of the switch (103) is controlled on the basis of phase displacement between the switch current and the load current for a modifiable load and/or variable input voltage, a variable dependent on the input voltage and a variable dependent on the output voltage. The inventive resonance converter enables variable loads to be driven efficiently with the aid of a transformer.
Abstract:
A compensating component and a method for the production thereof are described. Compensating regions are produced by implanting sulfur or selenium in a p-conductive semiconductor layer or, are provided as p-conductive regions, which are doped with indium, thallium and/or palladium, in a cluster-like manner inside an n-conductive region.
Abstract:
The semiconductor component has a drift zone (40) formed below one surface (101) of a semiconductor body (100) so that it extends laterally between 2 doped terminal regions (20,30), at least one field electrode (50) projecting into the drift zone from the surface of the semiconductor body and electrically insulated from the semiconductor body by an insulation layer (52).
Abstract:
Junction field effect transistor comprises p+> -conducting regions (4, 6) lying next to a control electrode (G) and extending together with and parallel to a drift zone (3) between electrodes in a semiconductor body (1).
Abstract:
A semiconductor component, which functions according to the principle of charge carrier compensation, has incompletely ionized dopants that are additionally provided in a semiconductor body of the semiconductor component. When a reverse voltage is applied, the degree of compensation changes as a function of time and the breakdown voltage of the semiconductor component increases in a manner governed by the degree of compensation. The invention furthermore relates to a circuit configuration and to a method for doping a compensation layer according to the invention.
Abstract:
Semiconductor element comprises a semiconductor layer (5) of first conductivity embedded in semiconductor body (1). The semiconductor layer has a partial dopant (16) of first conductivity which is incompletely ionized at room temperature and has a degree of ionization which increases with increasing temperature. Preferred Features: The dopant is arranged in a first region (15) of a body zone, in which the first region is arranged at a distance from a channel zone (10). The dopant is uniformly distributed within the semiconductor layer and/or in the body zone.
Abstract:
Verfahren zum Schalten eines Stromes zwischen einer Energiequelle (200) und einer Last, wobei das Verfahren aufweist:Betreiben eines Schaltmoduls (300), das zwischen die Energiequelle (200) und die Last gekoppelt ist und das zwei Eingangsanschlüsse (310, 312), die an die Energiequelle (200) gekoppelt sind, zwei Ausgangsanschlüsse (312, 313), die an die Last (400) gekoppelt sind, und wenigstens ein Halbleiterschaltelement (340), das zwischen einen der Eingangsanschlüsse und einen der Ausgangsanschlüsse gekoppelt ist, aufweist;Betreiben des Schaltmoduls in einem ersten Schaltbetrieb, bei dem das wenigstens eine Halbleiterschaltelement (340) getaktet für eine Ein-Dauer eingeschaltet und für eine Aus-Dauer ausgeschaltet wird; undAuswerten wenigstens eines elektrischen Parameters in dem Schaltmodul und Überführen des Schaltmoduls (300) vom ersten Schaltbetrieb in einen zweiten Schaltbetrieb abhängig von dem wenigstens einen elektrischen Parameter,wobei im zweiten Schaltbetrieb das wenigstens eine Halbleiterschaltelement (340) derart eingeschaltet wird, dass die Zeitdauer der Ein-Dauer wenigstens dem 10-fachen der Zeitdauer der Ein-Dauer während des ersten Schaltbetriebs entspricht.