Abstract:
PROBLEM TO BE SOLVED: To resolve a problem that the reliability risk in an actual device may be increased because edge regions of a chip are frequently subjected to a specific burden known and described as a TC stress during a temperature cycle because of different expansion coefficients, and these edge regions are especially likely to be subjected to the TC stress, which may cause various failures in the same region.SOLUTION: An anchoring structure 200 for a metal structure 210 of a semiconductor device includes an anchoring recess structure 220 including at least one overhang-shaped side wall 230. The metal structure 210 is arranged at least partially in the anchoring recess structure 220.
Abstract:
PROBLEM TO BE SOLVED: To provide an anchoring structure and an intermeshing structure which prevent metal lines from being lifted off from a surface of a chip to come off the chip in a temperature cycling (TC) reliability test for a semiconductor device. SOLUTION: The anchoring structure for a metal structure 210 of the semiconductor device includes an anchoring recess structure 220 having at least one overhanging side wall 230. The metal structure 210 is at least partly arranged within the anchoring recess structure 220. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
In order to prevent misfit caused by the high level of doping, the semiconductor substrate (1) of a field effect transistor, which comprises a body zone (3), is additionally doped with germanium or with carbon that serve to compensate for the misfit.
Abstract:
The invention relates to a method for producing a body area for a vertical MOS transistor array in a semiconductor body, wherein the body area has at least one channel region disposed between the source area and the drain area and borders on a gate electrode. A first implantation of doping material is effected in the semiconductor body, wherein the maximum of doping material of the first implantation is placed in the back part of the channel region (11) within the semiconductor body. At least a second implantation of doping material is then effected with a smaller dose than in the first implantation, wherein the maximum of doping material of the second implantation lies within the semiconductor body below the maximum of doping material of the first implantation. Subsequently, the doping material is diffused off.
Abstract:
The invention relates to a semiconductor component comprising a drift section (2) that is configured in a semiconductor member (1) and is made of a semiconductor material having a certain type of conductivity. Said drift section (2) is disposed between at least one first and a second electrode (3, 4) and is provided with a trench structure in the form of at least one trench (18). A dielectric material called high-k material is arranged in the trench structure. Said dielectric material has a relative dielectric constant e
Abstract:
The invention relates to a semiconductor device which can be controlled by means of a field effect. Said device contains a semiconductor body (100) comprising a doped first and second contact area (20, 22, 24, 30) to which connecting electrodes (90, 92) for applying power supply potential are connected. A first control electrode (40, 42, 44; 48, 49) is insulated in relation to the semiconductor body (100; 200) and can be connected to a first control potential. A second control electrode (60, 62, 64; 66, 68; 67, 69; 61, 63) is arranged adjacently in relation to the first control electrode (40, 42, 44; 48, 49). Said second control electrode is arranged in the semiconductor body in an insulated manner and can be connected to a second control potential.
Abstract:
The invention relates to a trench MOS-transistor, in which the body region (6) is strengthened by an implantation area (7) which faces the drain region (1, 2), in order to increase the avalanche resistance.
Abstract:
The invention relates to an MOS transistor structure with a trench gate electrode and a reduced specific closing resistor. The integral of the doping concentration of the body region in the lateral direction between two adjacent drift regions is greater than or equal to the integral of the doping concentration in a drift region in the same lateral direction. The invention also relates to methods for producing an MOS transistor structure. Body regions and drift regions are produced by means of epitaxic growth and implantation, repeated epitaxic growth or by filling trenches with doped conduction material.
Abstract:
Halbleitervorrichtung, die einen ersten Transistor (200, 3002) in einem Halbleiterkörper (100) umfasst, der eine erste Hauptoberfläche (110) hat, wobei der erste Transistor (200, 3002) aufweist:einen benachbart zur ersten Hauptoberfläche (110) angeordneten Sourcebereich (201, 301, 501),einen benachbart zur ersten Hauptoberfläche (110) angeordneten Drainbereich (205, 305, 505),einen Kanalbereich (220, 320, 520),eine Driftzone (260, 360, 560),einen elektrisch mit dem Sourcebereich (201, 301, 501) verbundenen Sourcekontakt (267, 3672, 502),einen elektrisch mit dem Drainbereich (205, 305, 505) verbundenen Drainkontakt (277, 3772, 506),eine Gateelektrode (210, 310, 510) an dem Kanalbereich (220, 320, 520), wobei der Kanalbereich (220, 320, 520) und die Driftzone (260, 360, 560) längs einer ersten Richtung zwischen dem Sourcebereich (201, 301, 501) und dem Drainbereich (205, 305, 505) angeordnet sind, die erste Richtung parallel zu der ersten Hauptoberfläche (110) ist und der Kanalbereich (220, 320, 520) eine Gestalt eines ersten Kammes hat, der sich längs der ersten Richtung erstreckt,wobei der Sourcekontakt (267, 3672, 502) benachbart zu der ersten Hauptoberfläche (110) ist und der Drainkontakt (277, 3772, 506) benachbart zu einer zweiten Hauptoberfläche (120) ist, die entgegengesetzt zu der ersten Hauptoberfläche (110) ist.
Abstract:
Halbleitervorrichtung, umfassend:einen ersten Lastanschluss (L1), der elektrisch mit Sourcezonen (110) von Transistorzellen (TC) verbunden ist, wobei die Sourcezonen (110) erste pn-Übergänge (pn1) mit Bodyzonen (115) bilden,einen zweiten Lastanschluss (L2), der elektrisch mit einer Drainkonstruktion (120) verbunden ist, die zweite pn-Übergänge (pn2) mit den Bodyzonen (115) bildet, undSteuerstrukturen (400), die direkt an die Bodyzonen (115) angrenzen, wobei die Steuerstrukturen (400) eine Steuerelektrode (420) und Ladungsspeicherstrukturen (410) umfassen, die Steuerelektrode (420) gestaltet ist, um einen Laststrom durch die Bodyzonen (115) zu steuern, die Ladungsspeicherstrukturen (410) die Steuerelektrode (420) von den Bodyzonen (115) isolieren und eine Steuerladung (419) enthalten, die ausgeführt ist, um bei Abwesenheit einer Potentialdifferenz zwischen der Steuerelektrode (420) und dem ersten Lastanschluss (L1) Inversionskanäle in den Bodyzonen (115) zu induzieren, wobeidie Bodyzonen (115) in Halbleitermesas (160) gebildet sind, die von Teilen eines Halbleiterkörpers (100) gebildet und voneinander durch die Steuerstrukturen (400) getrennt sind.