Abstract:
The invention relates to a method for the production of a semi-conductor structure comprising a plurality of gate stacks (GS1 - GS8) which are arranged on a semi-conductor substrate (1). Said method comprises the following steps: applying the gate-stack (GS1 - GS8) to a gate dielectric (5) via the semi-conductor substrate (1); implanting doping (100, 105, 110, 120, 130; 105''', 110''', 120''', 130''', 140''') which is self-adjusted in relation to the edges of the gate stack (GS1 - GS8); and forming an side wall oxide (40) on the free side walls of the gate stack (GS1 - GS8) while at the same time forming diffused doping areas (100', 110', 120', 130'; 110''', 120''', 130''', 140''') below the gate stack. The invention also relates to said type of semi-conductor structure.
Abstract:
The present invention relates to a method for producing a vertical transistor, and to a vertical transistor. A sacrificial gate oxide and a sacrificial gate electrode are used during the production of the vertical transistor to makes it possible to considerably reduce or entirely avoid negative effects that normally result from the production of insulation structures between the vertical transistors. In particular, broadening of the gate oxide at the edge of the gate electrode can be prevented, and the edge of the gate electrode can be influenced deliberately. This allows vertical transistors to be produced having a current/voltage characteristic that can be adjusted specifically. In particular, vertical transistors can be produced having a pronounced corner effect.
Abstract:
A trench cell for use in a DRAM array includes a vertical selection transistor of a first conductivity type at the-seen in the bit line direction-first side of the trench hole, a blocking doping region near the surface, of a second conductivity type, is provided adjacent to the trench hole, the blocking doping region lying opposite the vertical selection transistor. As a result, leakage currents can be avoided and, in addition, the trench cells can be disposed at a shorter distance from one another.
Abstract:
A method for fabricating a semiconductor gate structure including depositing at least one sacrificial layer on a semiconductor substrate; patterning the at least one sacrificial layer to form at least one cutout in the at least one sacrificial layer for uncovering the semiconductor substrate; forming a sidewall spacer over the sidewalls of the at least one sacrificial layer in the at least one cutout; forming a gate dielectric on the semiconductor substrate in the cutout; providing a gate electrode in the at least one cutout in the at lest one sacrificial layer; and removing the at least one sacrificial layer for the uncovering the gate electrode surrounded by the sidewall spacer. A semiconductor device is also provided.
Abstract:
Production of a semiconductor structure comprises applying gate stacks (GS1-GS8) onto a gate dielectric (5) over a semiconductor substrate (1), implanting a dopant (100) which is self-adjusting to the edges of the gate stack, and forming a side wall oxide (40) on exposed side walls of the gate stack with simultaneous formation of diffused doping regions (100', 110', 120', 130') under the gate edge. An Independent claim is also included for a semiconductor structure produced by the above process.
Abstract:
The present invention relates to a method for producing a vertical transistor, and to a vertical transistor. A sacrificial gate oxide and a sacrificial gate electrode are used during the production of the vertical transistor to makes it possible to considerably reduce or entirely avoid negative effects that normally result from the production of insulation structures between the vertical transistors. In particular, broadening of the gate oxide at the edge of the gate electrode can be prevented, and the edge of the gate electrode can be influenced deliberately. This allows vertical transistors to be produced having a current/voltage characteristic that can be adjusted specifically. In particular, vertical transistors can be produced having a pronounced corner effect.
Abstract:
Production of a trenched strap contact between a transistor and a trench capacitor in a memory cell, especially a DRAM cell, comprises: (a) forming a trench capacitor (70) in a substrate (10) having a lower region (12) filled with a first doping filling material and an unfilled region; (b) filling the unfilled region with monocrystalline silicon; (c) forming gate pathways (31, 41) on the substrate surface; (d) etching a contact trench (60) up to base formed by the first doped filling material to form the trench strap contact; (e) depositing a second filling material in the contact trench to form a trenched bridge (61) as part of the strap contact; and (f) heat treating to form a diffusion region (63) as part of the strap contact.
Abstract:
The device has a semiconducting substrate (402) with a source region, a drain region and a channel region, whereby the source and drain regions are connected to source (404) and drain (406) electrodes, the channel region has first and second constriction regions connected in parallel with respect to the source and drain electrodes and a gate electrode (408) arranged above the first and second constriction channel regions.