Abstract:
Methods and apparatus for producing composite-coated rigid flat-rolled sheet metal substrate in which thermoplastic polymeric materials are selected and combined for dual-layer molten-film extrusion presenting a first-contacting tie-layer and an externally-located finish-layer which are simultaneously extruded for a single substrate surface at-a-time; in which tie-layer selection includes an ethylene-glycol modified PET, requiring a substrate-surface temperature between 230° F. and 300° F., and a maleic-anhydride modified polyethylene free of any substrate-surface heating requirement; the tie-layer provides sufficient green-strength-adhesion for a finish-layer selected from PBT, PET, and a combination of PBT and PET; each substrate-surface is separately activated for desired adhesion and separately polymeric coated; dual-surface finishing-processing is carried-out by remelting the coated polymeric materials for completing bonding of the dual polymeric layers on each inorganic-metallic protectively-coated surface of the substrate.
Abstract:
A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
Abstract:
The invention relates to a process for the preparation of a composite material, said composite material comprising a substrate and a layer on the substrate, comprising a vapour-depositing step in which a compound comprising a triazine compound is deposited on the substrate at a pressure below 1000 Pa, whereby the layer is formed, wherein during the vapour-depositing step the temperature of the substrate lies between −15 ° C. and +125 ° C. The invention further relates to a composite material, obtainable by the process as disclosed.
Abstract:
A process for forming a low emissivity, moisture vapor permeable metallized composite sheet by coating a moisture vapor permeable sheet with at least one metal and exposing the freshly deposited metal to an oxidizing plasma thereby forming a protective synthetic metal oxide over the metal. The composite sheet material is suitable for use as a building construction barrier layer such as roof lining and house wrap.
Abstract:
A process is provided for making a composite work article suitable for fabricating rigid sheet metal can components. A steel sheet having first and second surfaces is pre-treated to enhance reception and retention of a multi-layer polymer coating on the pre-treated first surface. The multi-layer polymer coating is melt extruded on the pre-treated first surface and beyond opposite lateral edges of the work article to establish overhang portions, then solidified. The multi-layer polymeric coating has a tie polymeric layer contacting the pre-treated first surface, and a finish-surface polymeric layer. The solidified overhang portions are trimmed, and the extruded multi-layer polymeric coating is subjected to finish-treatment, involving heating the extruded multi-layer polymeric coating at least to a melt temperature thereof, then cooling the multi-layer polymeric coating through glass-transition temperature thereof at a sufficiently rapid rate to establish amorphous non-directional characteristics in the polymeric coating.
Abstract:
A porous substrate is pretreated in a plasma field and a functionalizing monomer is immediately flash-evaporated, deposited and cured over the porous substrate in a vacuum vapor-deposition chamber. By judiciously controlling the process so that the resulting polymer coating adheres to the surface of individual fibers in ultra-thin layers (approximately 0.02-3.0 μm) that do not extend across the pores in the material, the porosity of the porous substrate is essentially unaffected while the fibers and the final product acquire the desired functionality. The resulting polymer layer is also used to improve the adherence and durability of metallic and ceramic coatings.
Abstract:
A first member is configured to undergo sliding contact with a surface of a second member. The surface of the first member is roughened by irradiating the surface of the first member with a laser to form first recesses in the surface of the first member. The surface of the first member is then cleaned followed by a finely roughening step of irradiating the first recesses formed in the surface of the first member with a plasma to form second recesses which are shallower than the first recesses. Thereafter, a fluorocarbon resin is coated on the surface of the first member so that the fluorocarbon resin securely contacts and adheres to the surface of the first member due to the rough and clean state thereof. The surface of the first member is then subjected to a heat treatment.
Abstract:
An apparatus that includes a plasma treatment device operable to produce a plasma treated surface on a part and a dispensing module and operable to dispense an adhesive/sealant onto the plasma treated surface.
Abstract:
An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and a SAM organic-based layer is directly deposited over the oxide-based layer. Typically a series of alternating layers of oxide-based layer and organic-based layer are applied.
Abstract:
The process comprises the steps of: (a) subjecting said at least one main face of an optical lens to a corona discharge or atmospheric plasma treatment; (b) dipping the optical lens in a curable coating composition to deposit a layer of the curable coating composition on said main face; and (c) curing the curable coating composition layer; wherein during the whole process the optical lens is carried by a same lens holder so that the said lens face is freely accessible and without necessitating manual handling of the lens.