Abstract:
A multi-layer microwave corrugated printed circuit board is provided. In one embodiment, an interconnect assembly includes a first flat flexible layer having a signal conductor and a ground conductor forming a first microstripline or microstrip transmission line, a second folded flexible layer having a signal conductor and a ground conductor forming a second microstripline or microstrip transmission line, the bottom surface of the second folded flexible layer having ridge portions, a non-conductive adhesive layer disposed between the top surface of the first flat flexible layer and the ridge portions of the second folded flexible layer, a signal through-hole extending through the non-conductive adhesive layer and the first flat flexible layer, and two ground through-holes extending through the non-conductive adhesive layer and the second folded flexible layer, wherein the two ground through-holes are disposed on opposite sides of the signal through-hole.
Abstract:
A wireless communication apparatus, includes: a second circuit board; a wireless communication processing circuit accommodated in the second circuit board; a first signal line that connects a first ground potential portion of the first circuit board with a first antenna feed point of the wireless communication processing circuit, wherein the first signal line and the first ground potential portion are configured to operate as a first antenna; a second signal line that connects the first circuit board with the second circuit board and is configured to convey a baseband signal; and a circuit element that is connected to the second signal line and is configured to block RF signals that are sent and received by the wireless communication processing circuit.
Abstract:
Disclosed is a grounding pattern structure for high-frequency connection pads of a circuit board. A substrate of the circuit board includes a component surface on which at least a pair of high-frequency connection pads. At least a pair of differential mode signal lines are formed on the substrate and connected to the high-frequency connection pads. The grounding surface of the substrate includes a grounding layer formed at a location corresponding to the differential mode signal lines. The grounding surface of the substrate includes a grounding pattern structure formed thereon to correspond to a location adjacent to the high-frequency connection pads. The grounding pattern structure is electrically connected to the grounding layer. The component surface of the substrate can be provided with a connector mounted thereto with signal terminals of the connector soldered to the high-frequency connection pads.
Abstract:
For a method for producing a circuit board consisting of a plurality of circuit board areas, wherein the individual circuit board areas comprise at least one layer made of an in insulating base material and a conducting pattern located on or in the base material, the following is provided: a substrate material, at least one registration mark formed in the substrate material, a first circuit board area arranged on the substrate material, at least one additional circuit board area, which substantially adjoins the first circuit board area or at least partially overlaps the first circuit board, the additional circuit board areas being oriented relative to the registration mark, and a plurality of connections of the conducting patterns of the first circuit board area and of the at least one additional circuit board area. Thus improved registration and orientation can be achieved when circuit board areas are coupled.
Abstract:
Embodiments of the invention include flexible circuit board interconnections and methods regarding the same. In an embodiment, the invention includes a method of connecting a plurality of flexible circuit boards together comprising the steps applying a solder composition between an upper surface of a first flexible circuit board and a lower surface of a second flexible circuit board; holding the upper surface of the first flexible circuit board and the lower surface of the second flexible circuit board together; and reflowing the solder composition with a heat source to bond the first flexible circuit board and the second flexible circuit board together to form a flexible circuit board strip having a length longer than either of the first flexible circuit board or second flexible circuit board separately. In an embodiment the invention includes a circuit board clamp for holding flexible circuit boards together, the clamp including a u-shaped fastener; a spring tension arm connected to the u-shaped fastener; and an attachment mechanism connected to the spring tension arm. Other embodiments are also included herein.
Abstract:
This electronic circuit, includes a set of electronic boards intended to support components and linked together by joining elements. The joining elements include curved flexible printed circuits linking two opposing ends of two electronic boards running side by side, the said curved flexible printed circuits being foldable for erecting the electronic circuit into a volume so that the electronic circuit comprises electronic boards placed opposite one another.
Abstract:
A light module (1; 14), comprising a carrier (8, 10) for mounting at least one semiconductor source (5), in particular a light emitting diode, wherein: the carrier (8, 10) has a flexible printed circuit board (10), the flexible printed circuit board (10) is bonded face-to face to at least one base plate, (8) and the carrier (8, 10) can be bent along at least one predetermined bending line (3; 3a-3e), the base plate (8) can be bent along the at least one bending line, (3; 3a-3e), the base plate (8) has at least one cutout (9) along the bending line (3; 3a-3e) and the flexible printed circuit board (10) has at least one strip (11; 15) which crosses at least one of the cutouts (9).
Abstract:
An electrical connection between two electrical harnesses is provided. The electrical harnesses include flexible printed circuits with embedded conductive tracks, each of which terminates in a receiving hole in a respective terminating region The terminating regions are connected together using conductive pins. The connection formation is then encapsulated by an encapsulating body formed of an insulating. The encapsulating body seals and protects the electrical connection, which is thus reliable and robust.
Abstract:
A process for assembling a rigid-flex printed circuit board (PCB) is presented. During operation, the process receives rigid-flex PCBs that are to be coupled together, wherein a rigid-flex PCB includes flexible PCBs coupled to rigid PCBs. The process then places the PCBs onto a carrier which is configured to: align the PCBs so that bond regions located on the flexible PCBs overlap with bond regions located on corresponding flexible PCBs, and apply pressure to the overlapped bond regions. The process then sends the carrier through a reflow oven which reflows solder on the PCBs so that the components become mechanically and electrically coupled to the PCBs. The temperature profile generated by the reflow oven and the pressure applied by the carrier cures and sets an anisotropic conductive film located in the bond regions so that the overlapped flexible PCBs become mechanically and electrically coupled together.