Abstract:
An article includes a top electrode that is embedded in a solder mask. An article includes a top electrode that is on a core structure. A process of forming the top electrode includes reducing the solder mask thickness and forming the top electrode on the reduced-thickness solder mask. A process of forming the top electrode includes forming the top electrode over a high-K dielectric that is in a patterned portion of the core structure.
Abstract:
A ceramic multilayer substrate has a ceramic laminate including a plurality of ceramic layers laminated, having a first main surface, and including internal circuit elements disposed in the inside, a resin layer having a bonding surface in contact with the first main surface of the ceramic laminate and a mounting surface opposite to the bonding surface, external electrodes, each disposed on the mounting surface of the resin layer and electrically connected to at least one of the internal circuit elements of the ceramic laminate, and a ground electrode, a dummy electrode, or capacitor electrodes disposed at an interface between the first main surface of the ceramic laminate and the bonding surface of the resin layer or in the inside of the resin layer.
Abstract:
This invention provides a printed wiring board having an intensified drop impact resistance of a joint portion between pad and solder. An electrode pad comprises pad portion loaded with solder ball and a cylindrical portion projecting to the solder ball supporting the pad portion. An outer edge of the pad portion extends sideway from a cylindrical portion so that the outer edge is capable of bending. If the outer edge bends when stress is applied to the solder ball 30, stress on the outer edge of the pad portion on which stress is concentrated can be relaxed so as to intensify the joint strength between an electrode pad and solder ball.
Abstract:
A substrate for a semiconductor package includes a ball land disposed on one surface of an insulating layer. A solder resist is applied to the surface of insulating layer while leaving the ball land exposed. A coating film is applied on the exposed surface of the 1o ball land. The coating film includes a high molecular compound having metal particles. In the substrate having the ball land with the coating film formed thereon, it is not necessary to subject the substrate to a UBM formation process.
Abstract:
An electronic component includes: a multilayer ceramic substrate that has a penetration electrode formed therein, and has a passive element provided on the upper face thereof; an insulating film that is provided on the multilayer ceramic substrate, and has an opening above the penetration electrode; a first connecting terminal that is provided on the insulating film so as to cover the opening, and is electrically connected to the penetration electrode; and a second connecting terminal that is provided on a region of the insulating film other than the opening region.
Abstract:
A method for fabricating an electrical conductive structure of a circuit board is disclosed. The method includes providing a circuit board having a plurality of first and second electrically conductive pads; forming on the circuit board an insulating protection layer having a plurality of openings for exposing the first and second electrically conductive pads; forming a metal adhesive layer on the first and second electrically conductive pads; forming a conductive layer on the insulating protection layer and on the metal adhesive layer formed on the first and second electrically conductive pads, the conductive layer being electrical conductive to the first and second electrically conductive pads; forming on the conductive layer a resist layer having a plurality of openings for exposing the conductive layer on the second electrically conductive pads; and electroplating a conductive structure on the conductive layer on the second electrically conductive pads exposed from the openings.
Abstract:
In a method for fixing an electronic component (3) on a printed circuit board (2), and contact-connecting the electronic component (3) to the printed circuit board (2), the following steps are provided: —providing the printed circuit board (2) having a plurality of contact and connection pads (8), —providing the electronic component (3) having a number of contact and connection locations (5) corresponding to the plurality of contact and connection pads (8) of the printed circuit board (2), with a mutual spacing reduced in comparison with the spacing of the contact and connection pads (8) of the printed circuit board (2), and —arranging or forming at least one interlayer (4) for routing the contact and connection locations (5) of the electronic component (3) between the contact and connection pads (8) of the printed circuit board (2) and the contact and connection locations (5) of the electronic component (3). A method for producing an interlayer (4) for routing and a system having a printed circuit board (2) and an electronic component (3) using the interlayer (4) for routing are also provided.
Abstract:
An electrical structure and method of forming. The electrical structure comprises an interconnect structure and a substrate. The substrate comprises an electrically conductive pad and a plurality of wire traces electrically connected to the electrically conductive pad. The electrically conductive pad is electrically and mechanically connected to the interconnect structure. The plurality of wire traces comprises a first wire trace, a second wire trace, a third wire trace, and a fourth wire trace. The first wire trace and second wire trace are each electrically connected to a first side of the electrically conductive pad. The third wire trace is electrically connected to a second side of the electrically conductive pad. The fourth wire trace is electrically connected to a third side of said first electrically conductive pad. The plurality of wire traces are configured to distribute a current.
Abstract:
A circuit board structure and a method for fabricating the same are disclosed, including providing a core board having conductive traces and solder pads respectively formed thereon, wherein width of the solder pads corresponds to that of the conductive traces, and pitch between adjacent solder pads is made wide enough to allow multiple conductive traces to pass through; forming on the core board an insulating layer with openings for exposing the solder pads therefrom; forming on the insulating layer a plurality of extending pads electrically connected to the solder pads respectively, wherein the projection area of the extending pads is larger than that of the corresponding solder pads and covers conductive traces adjacent to the corresponding solder pads. Thus, more conductive traces are allowed to pass between adjacent solder pads and meanwhile, the extending pads provide an effective solder ball wetting area for achieving good solder joints and sufficient height after collapse.
Abstract:
A structure of a packaging substrate and a method for making the same are disclosed, wherein the structure comprises: a substrate body having a circuit layer on the surface thereof, wherein the circuit layer has a plurality of conductive pads which are each formed in a flat long shape to enhance the elasticity of circuit layout; a solder mask disposed on the substrate body and having a plurality of openings corresponding to and exposing the conductive pads, wherein the openings are each formed in a flat long shape; and a metal bump disposed in each of the openings of the solder mask and on each of the corresponding conductive pads.