Abstract:
A structural printed wiring board panel includes a multilayer printed wiring board having opposing, outer faces and interlayer interconnects that route RF, power and control signals. Connection areas are formed in or on at least on one face for connecting the interlayer interconnects and any electrical components. A metallic face sheet is secured onto at least one outer face, adding structural rigidity to the multilayer printed wiring board. A metallic face sheet can have apertures positioned to allow access to connection areas. RF components can be carried by a face sheet and operatively connected to connection areas. Antenna elements can be positioned on the same or an opposing face sheet and operatively connected to RF components to form a phased array printed wiring board (PWB) panel,
Abstract:
A recording apparatus, including: a recording head including an actuator; a head holder holding the head; a circuit board disposed on the holder and configured to be connected to an external signal source; a drive circuit operable to drive the actuator; a flexible wiring member which includes wires that connect the actuator and the circuit board, which is elongated in a direction in which the wires extend, which is connected to the actuator and the circuit board at longitudinally opposite ends thereof, respectively, and on which the drive circuit is mounted between the longitudinal opposite ends, the wires including (a) a common voltage wire which connects common-voltage portions of the drive circuit and the circuit board and (b) a drive signal wire for driving the actuator; and a radiator having heat conductivity and electric conductivity and disposed between the head and the circuit board so as to extend along the wiring member, the radiator being heat-conductively and electrically joined to: (a) the common voltage wire in the vicinity of the drive circuit; (b) at least one portion of the common voltage wire intermediate between the drive circuit and the circuit board; and (c) at least one of (c-1) the common voltage wire in the vicinity of the circuit board and (c-2) the common-voltage portion of the circuit board connected to the commom voltage wire of the wiring member.
Abstract:
[Object] To provide a wired circuit board in which charged static electricity can be efficiently removed before mounting of electronic components and electrical stability of a wired circuit body portion can be reliably secured after the mounting of the electronic components.[Solution Means] In a suspension board with circuit 1 in which a metal supporting layer 12, an insulating base layer 13, a conductive pattern 14 having a main wired circuit 5 formed on a wired circuit body portion 2 and an auxiliary wired circuit 11 formed on an electrostatic charge removing portion 3, and an insulating cover layer 15 are sequentially laminated, a semiconductive layer 9 covering the auxiliary wired circuit 11 is formed on the insulating base layer 13 in the electrostatic charge removing portion 3. Before mounting of a magnetic head, static electricity charged on the wired circuit body portion 2 can be efficiently removed via the semiconductive layer 9. After the mounting of the magnetic head, the electrostatic charge removing portion 3 is separated from the wired circuit body portion 2 using a conduction cut-off portion 4 as a boundary, so that electrical conduction between the wired circuit body portion 2 and the electrostatic charge removing portion 3 is cut off.
Abstract:
A wired circuit board has a metal supporting board, an insulating layer formed on the metal supporting board, a conductive pattern formed on the insulating layer and having a plurality of wires arranged in mutually spaced-apart relation, and a plurality of semiconductive layers formed on the insulating layer and electrically connected to the metal supporting board and the respective wires. The semiconductive layers are provided independently of each other in correspondence to the respective wires.
Abstract:
A multi-layered interconnect structure and method of formation. In a first embodiment, first and second liquid crystal polymer (LCP) dielectric layers are directly bonded, respectively, to first and second opposing surface of a thermally conductive layer, with no extrinsic adhesive material bonding the thermally conductive layer with either the first or second LCP dielectric layer. In a second embodiment, first and second 2S1P substructures are directly bonded, respectively, to first and second opposing surfaces of a LCP dielectric joining layer, with no extrinsic adhesive material bonding the LCP dielectric joining layer with either the first or second 2S1P substructures.
Abstract:
The wired circuit board includes a metal supporting board, an insulating base layer formed on the metal supporting board, a conductive pattern formed on the insulating base layer, a semiconductive layer formed on the insulating base layer so as to cover the conductive pattern, and a ground connecting portion formed on the metal supporting board to be in contact with the metal supporting board and the semiconductive layer.
Abstract:
Processes for fabricating a multi-layer circuit assembly and a multi-layer circuit assembly fabricated by such processes are provided. The process includes (a) providing a substrate at least one area of which comprises a plurality of vias, these area(s) having a via density of 500 to 10,000 holes/square inch (75 to 1550 holes/square centimeter); (b) applying a dielectric coating onto all exposed surfaces of the substrate to form a conformal coating thereon; and (c) applying a layer of metal to all surfaces of the substrate. Additional processing steps such as circuitization may be included.
Abstract:
A production method of a suspension board with circuit that can provide reduced number of man-hour and complicated processes for forming the ground terminal, to provide production cost reduction. An insulating base layer 4 having a base opening portion 3 is formed on a metal board 2 at a ground terminal 13 forming position, and a thin metal film 5 is formed on the metal board 2 exposed in the base opening portion 3 and on the insulating base layer 4. Then, a conductive pattern 7 is formed on the thin metal film 5. Then, an insulating cover layer 9 covering the conductive pattern 7 and having a cover opening portion 8 which correspond in position to the base opening portion 3 is formed on the insulating base layer 4. Then, a metal board opening portion 11 from which the base opening portion 3 and the insulating base layer 4 around it are exposed is formed in the metal board 2. Then, an electrolytic plating layer 12 is formed on each side of the conductive pattern 7 exposed in the cover opening portion 8, feeding electric power from the conductive pattern 7, and a metal filling layer 14 is formed in the metal board opening portion 11, to allow the electrolytic plating layer 12 and the metal board 2 to be conductive with each other.
Abstract:
Provided is a method of forming a circuit board including (a) providing a first conductive sheet; (b) selectively removing one or more portions of the first conductive sheet to form a first panel having a first circuit board that is coupled to a disposable part of the first panel by at least one tab that extends from an edge of the first circuit board to an edge of the disposable part of the first panel; (c) applying an insulating coating to the first circuit board so that at least each edge of the first circuit board is covered thereby; and (d) separating the first circuit board from the disposable part in a manner whereupon at least part of the tab remains attached to the first circuit board and includes an exposed edge of the conductive sheet of the first circuit board. Circuit boards formed by the method are also provided.
Abstract:
The invention provides an electronic apparatus having a metal core substrate including a metal plate, an insulating layer formed on the metal plate and a conductive layer formed on the insulating layer, and an electronic part, and to which the conductive layer and a terminal of the electronic part are connected. In the electronic apparatus, a member having a high thermal conductivity is arranged so as to be in contact with both of the metal plate and the electronic part. Accordingly, a heat radiating property of the electronic apparatus is increased.