Abstract:
Various embodiments include systems and methods to provide selectable variable gain to signals in measurements using incident radiation. The selectable variable gain may be used to normalize signals modulated in measurements using incident radiation. The selectable variable gain may be attained using a number of different techniques or various combinations of these techniques. These techniques may include modulating a modulator having modulating elements in which at least one modulating element acts on incident radiation differently from another modulating element of the modulator, modulating the use of electronic components in electronic circuitry of a detector, modulating a source of radiation or combinations thereof. Additional apparatus, systems, and methods are disclosed.
Abstract:
A light detecting device is provided, comprising a substrate having a patterned metal layer formed thereon; a dielectric layer formed on the substrate, first pixel element formed on the dielectric layer, and a second pixel element. The dielectric layer at least has a first trench, and the first trench is positioned below the level of the first pixel element. The second pixel element comprises a buried portion formed correspondingly to the first trench, and an upper portion formed on the buried portion. The upper portion of the second pixel element is positioned at the same level of the first pixel element.
Abstract:
According to an example, a first mirror layer may be formed on a substrate. A first set of spacer layers may be deposited on the first mirror layer to be positioned above a first group of the sensing elements and a second set of spacer layers may be deposited on the first mirror layer to be positioned above a second group of the sensing elements, in which the second set of spacer layers differs from the first set. In addition, a second mirror layer may be formed above the deposited first set of spacer layers and the deposited second set of spacer layers.
Abstract:
The invention provides a high resolution, wide dynamic range, multi-color detection platform for microfluidic analyzers/instruments and methods. The detection platform uses multiple high gain semiconductor optical sensors for the detection of luminescence from cellular or biological samples. The digitized outputs from these sensors are combined and weighted in a signal processing unit, using pre-determined algorithms for each color, which optimize the resolution in each of these high gain semiconductor optical sensors while extending the dynamic range of the detection platform.
Abstract:
Method and apparatus for determining direction from which electromagnetic radiation originates and spectral characteristics of the radiation are provided. Lenses, diffraction gratings, which may be present on the surface of the lenses, and mirrors direct radiation to a photodetector. Lens and grating parameters, along with the location, size, relative spacing and orientation of diffracted orders of radiation detected by the photodetector are used for determining direction from which the radiation originates.
Abstract:
The color filter array 21a comprises seven or more types of color filters including a first color filter. The seven or more types color filters have different spectral sensitivity characteristics. The seven or more types of color filters are arranged in a two-dimensional form. Among the seven or more types of color filters, at least two types of color filters are designated as a color filter of interest. Two color filters arranged at a first interval on both sides of the color filter of interest along a first direction are of the same type. Two color filters arranged at a second interval on both sides of the color filter of interest along a second direction that is different from the first direction are of the same type. Among the color filters, at least one type of color filter have a density higher than that of the other types of color filters, thereby realizing acquisition of highly accurate gradient information from a multiband color filter array.
Abstract:
A light detecting device is provided, comprising a substrate having a patterned metal layer formed thereon; a dielectric layer formed on the substrate, first pixel element formed on the dielectric layer, and a second pixel element. The dielectric layer at least has a first trench, and the first trench is positioned below the level of the first pixel element. The second pixel element comprises a buried portion formed correspondingly to the first trench, and an upper portion formed on the buried portion. The upper portion of the second pixel element is positioned at the same level of the first pixel element.
Abstract:
Detectors and methods for gathering, detecting and analyzing electromagnetic radiation are disclosed. A radiation detector includes one or more positive lenses to direct radiation to mirrors or to a photodetector. Coordinates of directed radiation are measured and interpreted to determine the angle of arrival. A color filter mosaic may be present to determine wavelengths of detected radiation. Temporal characteristics of the radiation may be measured.
Abstract:
An illuminance and proximity sensor includes a first sensing unit that senses infrared light and green light, and forwards a first sensing signal corresponding to a result of the sensing, a second sensing unit that filters visible light, senses the infrared light, and forwards a second sensing signal corresponding to a result of the sensing, and a control unit that produces an illuminance using a first difference value from subtracting the second sensing signal from the first sensing signal, and a proximity using a second difference value from subtracting the first difference value from the second sensing signal.
Abstract:
The present invention relates to a multi-channel luminous energy sensing unit, an apparatus for measuring light energy of an exposure device and a method for measuring light energy by channel. In accordance with one embodiment of the present invention, a multi-channel luminous energy sensing unit to sense an amount of light illuminated from a light source, which includes a board; and a plurality of light sensor modules arranged on the board for sensing at least two channel light with bandwidths different from each other among the light illuminated from the light source, is provided. And also, an apparatus for measuring light energy of an exposure device including the same and a method for measuring light energy by channel are provided.