Abstract:
A LIBS analyzer and method includes a laser configured to produce a plasma on a sample at a focal point on the sample and a spectrometer responsive to radiation emitted from the plasma and configured to produce an output spectrum. A detector is positioned to detect low intensity pre-firing radiation produced by the laser and reflected off the sample from the focal point. The intensity of the low intensity pre-firing radiation is compared to a predetermined minimum and the laser pump sequence is halted if the intensity of the low intensity pre-firing radiation is less than the predetermined minimum.
Abstract:
A handheld LIBS spectrometer includes an optics stage movably mounted to a housing and including a laser focusing lens and a detection lens. One or more motors advance and retract the optics stage, move the optics stage left and right, and/or move the optics stage up and down. A laser source in the housing is oriented to direct a laser beam to the laser focusing lens. A spectrometer subsystem in the housing is configured to receive electromagnetic radiation from the detection lens and to provide an output. A controller subsystem is responsive to the output of the spectrometer subsystem and is configured to control the laser source and motors. In this way, auto-calibration, auto-clean, and auto-focus, and/or moving spot functionality is possible.
Abstract:
The present invention discloses a spectrometer apparatus comprising a mobile device including an integrated camera, having a camera lens and an image sensor. The camera lens is located within a body of the mobile device that comprises a detachable housing coupled to the body of the mobile device. The detachable housing includes a first end and a second end opposed to the first end. The first end includes an optical input and the second end includes an opening that is substantially aligned with the camera lens. An optical spectrometer device is located within the housing and optically coupled to both the optical input at the first end of the housing and the camera lens at the second end of the housing. The optical spectrometer device receives a target image from the optical input and generates a spectral image that is received by the image sensor via the camera lens.
Abstract:
A spectral imaging device (12) includes an image sensor (28), an illumination source (14), a refractive, optical element (24A), a mover assembly (24C) (29), and a control system (30). The image sensor (28) acquires data to construct a two-dimensional spectral image (13A) during a data acquisition time (346). The illumination source (14) generates an illumination beam (16) that illuminates the sample (10) to create a modified beam (16I) that follow a beam path (16B) from the sample (10) to the image sensor (28). The refractive, optical element (24A) is spaced apart a separation distance (42) from the sample (10) along the beam path (16B). During the data acquisition time (346), the control system (30) controls the illumination source (14) to generate the illumination beam (16), controls the mover assembly (29) (24C) to modulate the separation distance (42), and controls the image sensor (28) to capture the data.
Abstract:
Aspects of a tandem dispersive range monochromator and data knitting for the monochromator are described herein. In one embodiment, the monochromator includes a tandem diffraction grating, a grating drive motor that rotates the tandem diffraction grating to provide, by diffraction of broadband light, first dispersed wavelengths of light and second dispersed wavelengths of light, a detector that detects a first reflection from the first dispersed wavelengths of light and a second reflection from the second dispersed wavelengths of light, and processing circuitry that knits together data values from the first reflection and data values from the second reflection to provide a spectrum of combined data values. By using a tandem diffraction grating having different dispersive surfaces, measurements of relatively high precision and quality may be taken throughout a wider spectral range, and the measurements may be knitted together to provide a spectrum of combined data values.
Abstract:
A Raman spectroscopic apparatus analyzes a substance under analysis and includes a light source that emits light of a first wavelength, an optical device that adsorbs the substance under analysis and is irradiated with the light of the first wavelength, and an optical detector that receives light radiated from the optical device. The optical device includes a first structural member that generates charge transfer resonance in response to the light of the first wavelength and a second structural member that is less than or equal to 5 nm from the first structural member and generates surface plasmon resonance in response to the light of the first wavelength. The first structural member is made of a metal or a semiconductor, and the second structural member is made of a metal different from the material of the first structural member.
Abstract:
An “integrated” Fabry-Perot interferometer, such as for use in a spectrophotometer, is fabricated by attaching two micro-machined semiconductor-on-insulator wafers to one another. One mirror is formed on each micro-machined wafer. One mirror is supported by a thermally insulated, suspended micro-platform. In some embodiments, interferometer cavity length is adjustable. Detectors are disposed at least partially within the micro-platform. In some embodiments, the interferometer, a light source, and other circuitry and components, such as wireless communications components, are contained in a sealed package that includes a sampling region, thereby providing an integrated spectrophotometer. The integrated spectrophotometer can be implanted, for example, in animal tissue environments, such as for analyzing various compounds in the blood.
Abstract:
A device and method for identifying solid and liquid materials use near-infrared transmission spectroscopy combined with multivariate calibration methods for analysis of the spectral data. Near-infrared transmission spectroscopy is employed within either the 700-1100 nm or the 900-1700 nm wavelength range to identify solid or liquid materials and determine whether they match specific known materials. Uses include identifying solid (including powdered) and liquid materials with a fast measurement cycle time of about 2 to 15 seconds and with a method that requires no sample preparation, as well as quantitative analysis to determine the concentration of one or more chemical components in a solid or liquid sample that consists of a mixture of components. A primary application of such analysis includes detection of counterfeit drug tablets, capsules and liquid medications.
Abstract:
This invention discloses a self-referencing spectrometer that simultaneously auto-calibrate and measure optical spectra of physical object utilizing shared aperture as optical inputs. The concurrent measure and self-calibrate capabilities makes it possible as an attachment spectrometer on a mobile computing device without requiring an off-line calibration with an external reference light source. Through the mobile computing device, the obtained spectral information and imagery captured can be distributed through the wireless communication networks.
Abstract:
A jack (10) of the invention includes a holding body (9) having an insertion hole (15) into which an optical plug is able to be inserted, a window material (6) through which infrared radiation passing through the insertion hole (15) is transmitted, and a light reception unit (2) which detects infrared radiation of 6 μm or more and 15 μm or less transmitted through the window material (6). The window material (6) is provided in the holding body (9) so as to prevent water from intruding into the light reception unit (2), and arranged at a bottom of the insertion hole (15). Thereby, it is possible to give a waterproof property to an element which receives infrared radiation without limitation to design or aesthetic appearance of an electronic apparatus.