Abstract:
A wiring substrate includes a substrate main body which is formed of a ceramic laminate and has a rectangular shape in plan view, and which has a front surface and a back surface and has four side surfaces, each being located between the front surface and the back surface, and having a groove surface located on a side toward the front surface and a fracture surface located on a side toward the back surface; and a metalized layer which is formed on the front surface of the substrate main body so as to extend along the four side surfaces, and which has a rectangular frame shape in plan view, wherein a horizontal surface of the ceramic laminate of the substrate main body is exposed between the metalized layer and the groove surface of each side surface of the substrate main body.
Abstract:
A method of making a multi-layer micro-wire structure includes providing a substrate having a substrate edge and first and second layers formed over the substrate. One or more micro-channels are imprinted in each of the first and second layers and first and second micro-wires located in the imprinted micro-channels, the micro-wires forming at least a portion of an exposed connection pad in each layer. The second layer edge is farther from the substrate edge than the first layer edge for at least a portion of the second layer edge so that the first connection pads are exposed through the second layer.
Abstract:
A circuit board prevents breakage at a boundary between a rigid region and a flexible region and includes a body including stacked flexible sheets, and rigid regions and a flexible region more flexible than the rigid regions. A circuit is defined by a conductor provided in the body. In the flexible region on a principal surface of the body, grooves are arranged to be in contact with boundaries between the flexible region and the rigid regions and to extend along the boundaries.
Abstract:
This wiring board is provided with an insulating core substrate, a first conductor pattern, a second conductor pattern, and a conductive material. The first conductor pattern and the second conductor pattern are adhered to the insulating core substrate. The second conductor pattern has a first surface and a second surface. The second conductor pattern has a concavity and a through-hole. The opening of the concavity that opens to the first surface and the opening of the through hole that opens to the first surface are interconnected to each other. The first conductor pattern is positioned at the opening of the concavity. The first conductor pattern and the second conductor pattern are electrically connected by means of the conductive material, which fills from the opening of the through hole that opens to the second surface.
Abstract:
A flexible display device that can suppress spread of cracks of an inorganic layer is provided. A flexible display device includes a flexible substrate including a display area and a periphery surrounding the display area, an inorganic layer formed on the flexible substrate, a display unit formed on the display area, and a thin film encapsulation layer covering the display unit. The inorganic layer includes an opening disposed on a periphery between edges of the flexible substrate and the thin film encapsulation layer.
Abstract:
A display device includes: a display substrate, and a flexible printed circuit film connected to the display substrate. The flexible printed circuit film includes a main body including a bending region, and a first cover layer disposed on a first side of the main body, and the first cover layer has a first opening exposing a portion of the bending region.
Abstract:
A booster antenna (BA) for a smart card comprises a card antenna (CA) component extending around a periphery of a card body (CB), a coupler coil (CC) component at a location for an antenna module (AM), and an extension antenna (EA) contributing to the inductance of the booster antenna (BA). A method of wire embedding is also disclosed, by controlling a force and ultrasonic power applied by an embedding tool at different positions on the card body (CB).
Abstract:
A cabinet for housing electronic plug-in cards has front and rear card baskets for inserting plug-in cards and first and second vertical backplanes. The front side of the first backplane faces the front of the cabinet and the front side of the second backplane faces the back of the cabinet. A distance piece connects the two backplanes and a counterbore is disposed in at least one of the rear sides of the two backplanes. The depth of the counterbore or the residual thicknesses of the backplane after drilling the counterbore is sized such that the distance between the front side of the second backplane and the front of the cabinet is a predetermined value. This ensures that the plug-in cards pushed onto the second backplane are completely received inside the rear card basket and the front plate of the plug-in cards ends flush with the rear card basket.
Abstract:
A method for manufacturing a multi-piece board having a frame section and a multiple piece sections connected to the frame section includes forming a frame section from a manufacturing panel for the frame section, sorting out multiple acceptable piece sections by inspecting quality of piece sections, forming notch portions in the frame section and the acceptable piece sections such that the notch portions allow the acceptable piece sections to be arranged with respect to the frame section, provisionally fixing the piece sections and the frame section in respective positions, injecting an adhesive agent into cavities formed by the notch portions when the frame section and the piece sections are provisionally fixed to each other, and joining the acceptable piece sections with the frame section by curing the adhesive agent injected into the cavities.
Abstract:
A substrate including a fluid reservoir and a connected fluid channel, the fluid reservoir positioned away from a component region of the substrate, the fluid channel configured to extend from the fluid reservoir to guide an electrically conductive fluid from the fluid reservoir at a reservoir end of the fluid channel through the fluid channel to a component end of the fluid channel, the component end extending to the component region of the substrate to enable the formation of an electrical connection to a connector of an electronic component appropriately positioned in the component region, formation of the electrical connection allowing the electronic component to be interconnected to other electronic components using one or more of the fluid reservoir and fluid channel.