Abstract:
A printed circuit board including a conductor portion, an insulating layer formed over the conductor portion, a thin-film capacitor formed over the insulating layer and including a first electrode, a second electrode and a high-dielectric layer interposed between the first electrode and the second electrode, and a via-hole conductor structure formed through the second electrode and insulating layer and electrically connecting the second electrode and the conductor portion. The via-hole conductor structure has a first portion in the second electrode and a second portion in the insulating layer. The first portion of the via-hole conductor structure has a truncated-cone shape tapering toward the conductor portion.
Abstract:
Provided is a multilayer chip capacitor including a capacitor body having first and second capacitor units arranged in a lamination direction; and a plurality of external electrodes formed outside the capacitor body. The first capacitor unit includes at least one pair of first and second internal electrodes disposed alternately in an inner part of the capacitor body, the second capacitor unit includes a plurality of third and fourth internal electrodes disposed alternately in an inner part of the capacitor body, and the first to fourth internal electrodes are coupled to the first to fourth external electrodes. The first capacitor unit has a lower equivalent series inductance (ESL) than the second capacitor unit, and the first capacitor unit has a higher equivalent series resistance (ESR) than the second capacitor unit.
Abstract:
The semiconductor memory module incorporating antenna includes a wiring board (11) having a connection terminal (17) connected with a control semiconductor element (16) and arranged at a position exposed to the surface of an outer case (15), and a terminal electrode (18) for antenna connection connected with the control semiconductor element (16) and arranged in the outer case (15); a semiconductor storage element (12) mounted on one side of the wiring board (11); and a loop-like antenna (13) and an antenna terminal electrode (20) formed on the other side of the wiring board (11) along the outer peripheral thereof, the wiring board (11) includes at least one magnetic body layer (14) and the terminal electrode (18) for antenna connection is connected with the antenna terminal electrode (20).
Abstract:
A multilayer printed wiring board includes a core substrate, a resin insulation layer laminated on the core substrate and a capacitor section coupled to the resin insulating layer. The capacitor section includes a first electrode including a first metal and configured to be charged by a negative charge, and a second electrode including a second metal and opposing the first electrode, the second electrode configured to be charged by a positive charge. A dielectric layer is interposed between the first electrode and second electrode, and an ionization tendency of the first metal is larger than and ionization tendency of the second metal.
Abstract:
A circuit board or each circuit board of a multi-layer circuit board includes an electrically conductive sheet coated with an insulating top layer covering one surface of the conductive sheet, an insulating bottom layer covering another surface of the conductive sheet and an insulating edge layer covering an edge of the conductive sheet. An insulating interlayer can be sandwiched between a pair of adjacent circuit boards of a multi-layer circuit board assembly. A landless through-hole or via can extend through one or more of the circuit boards for connecting electrical conductors on opposing surfaces thereof.
Abstract:
In a printed wiring board 10, an upper electrode connecting portion 52 penetrates through a capacitor portion 40 in top to bottom direction so that an upper electrode connecting portion first part 52a is not in contact with the capacitor portion 40, passes through an upper electrode connecting portion third part 52c provided at the upper portion of the capacitor portion 40, and then connects from the upper electrode connecting portion second part 52b to an upper electrode 42. Furthermore, a lower electrode connecting portion 51 penetrates through the capacitor portion 40 in top to bottom direction so that it is not in contact with the upper electrode 42 of the capacitor portion 40, but is in contact with a lower electrode 41. Therefore, the upper electrode connecting portion 52 and the lower electrode connecting portion 51 can be formed even after in process of build-up, the whole surface is covered by a high dielectric capacitor sheet that has a structure that a high dielectric layer is sandwiched between two metal foils and will afterwards serve as the capacitor portion 40.
Abstract:
A method and apparatus for providing thermal dissipation from a PC card is disclosed. For one embodiment of the invention, an extension portion, having a heat sink implemented thereon, is provided for a PC card. The extension portion extends beyond the PC card slot allowing thermal dissipation from the card due to air flow over the heat sink. For one embodiment of the invention, heat producing components of the PC card are identified and a thermally conductive path is provided from the components to the extension portion of the PC card.
Abstract:
A method of making a circuitized substrate which includes at least one and possibly several capacitors as part thereof. In one embodiment, the substrate is produced by forming a layer of capacitive dielectric material on a dielectric layer and thereafter forming channels with the capacitive material, e.g., using a laser. The channels are then filled with conductive material, e.g., copper, using selected deposition techniques, e.g., sputtering, electro-less plating and electroplating. A second dielectric layer is then formed atop the capacitor and a capacitor “core” results. This “core” may then be combined with other dielectric and conductive layers to form a larger, multilayered PCB or chip carrier. In an alternative approach, the capacitive dielectric material may be photo-imageable, with the channels being formed using conventional exposure and development processing known in the art. In still another embodiment, at least two spaced-apart conductors may be formed within a metal layer deposited on a dielectric layer, these conductors defining a channel there-between. The capacitive dielectric material may then be deposited (e.g., using lamination) within the channels.
Abstract:
This invention relates to a capacitive/resistive device, which may be embedded within a layer of a printed wiring board. Embedding the device conserves board surface real estate, and reduces the number of solder connections, thereby increasing reliability. More specifically, the device, comprises a first metallic foil; a second metallic foil; a first electrode formed from the first metallic foil; a dielectric disposed over the first electrode, a resistor element formed on and adjacent to the dielectric; a conductive trace; and a second electrode formed from the second metallic foil and disposed over the dielectric and in electrical contact with the resistor element, wherein the dielectric is disposed between the first electrode and the second electrode and wherein said dielectric comprises an unfilled polymer of dielectric constant less than 4.0. This invention also relates to a method of making the device.
Abstract:
A novel method for manufacturing embedded a capacitive stack and a novel capacitive stack apparatus are provided having a capacitive core that serves as a structural substrate on which alternating thin conductive foils and nanopowder-loaded dielectric layers may be added and tested for reliability. This layering and testing allows early fault detection of the thin dielectric layers of the capacitive stack. The capacitive stack may be configured to supply multiple isolated capacitive elements that provide segregated, device-specific decoupling capacitance to one or more electrical components. The capacitive stack may serve as a core substrate on which a plurality of additional signaling layers of a multilayer circuit board may be coupled.