Abstract:
The optical/electrical composite wiring board comprises a lower insulating layer that also serves as a lower clad; a upper insulating layer that also serves as an upper clad; a core that is placed between the lower insulating layer and the upper insulating layer and has a predetermined optical wiring pattern; and a conductor layer that is placed along with the core between the lower insulating layer and the upper insulating layer and has a predetermined electrical wiring pattern. Herein, the core and the conductor layer are formed via a short manufacturing method, whereby the concave portion for optical wiring and the concave portion for electrical wiring are formed on the lower insulating layer by press process, and a core material and conductor material are filled into each of the concave portions, and afterward, the core material and conductor material are ground until they are flush with the upper surface of the lower insulating layer.
Abstract:
A printed circuit board using paste bumps and manufacturing method thereof are disclosed. The method of manufacturing a printed circuit board using paste bumps, includes: (a) perforating a core board to form at least one via hole, (b) filling the at least one via hole by fill-plating and forming a circuit pattern on at least one surface of the core board, (c) stacking a paste bump board on at least one surface of the core board, and (d) forming an outer layer circuit on a surface of the paste bump board, a structurally stable all-layer IVH structure can be implemented due to increased strength in the BVH's of the plated core boards, the manufacture time can be reduced due to parallel processes and collective stacking, implementing micro circuits can be made easy due to the copper foils of the paste bump boards stacked on the outermost layers, the manufacture costs can be reduced as certain plating and drilling processes may be omitted, the interlayer connection area is increased between circuit patterns for improved connection reliability, and dimple coverage can be obtained.
Abstract:
According to one embodiment, a printed wiring board includes, a main body including an obverse side with an obverse wiring layer, and a reverse side with a reverse wiring layer first pads provided on the obverse side in a first region defined thereon, and to be connected to terminals arranged on a surface of a first semiconductor chip, second pads provided on the reverse side in a second region defined thereon and overlapping with the first region, and to be connected to terminals arranged on a surface of a second semiconductor chip, and interlayer wiring electrically connecting those of the first pads, which are located in an overlapping region, to those of the second pads which are located in the overlapping region.
Abstract:
According to one embodiment, a printed wiring board includes, a main body including an obverse side with an obverse wiring layer, and a reverse side with a reverse wiring layer first pads provided on the obverse side in a first region defined thereon, and to be connected to terminals arranged on a surface of a first semiconductor chip, second pads provided on the reverse side in a second region defined thereon and overlapping with the first region, and to be connected to terminals arranged on a surface of a second semiconductor chip, and interlayer wiring electrically connecting those of the first pads, which are located in an overlapping region, to those of the second pads which are located in the overlapping region.
Abstract:
A flexible printed circuit capable of transmitting electrical and optical signals is disclosed. The flexible printed circuit includes a set of optical waveguides for transmitting optical signals and a set of conductors for transmitting electrical signals. Each of a subset of the optical waveguides is enclosed by a respectively one of the conductors. The optical waveguide is made of glass or plastic. The conductors are formed within a first building block constructed by a first dielectric layer and a first substrate layer, and a second building block constructed by a second dielectric layer and a second substrate layer.
Abstract:
Methods and apparatus for accessing a high speed signal routed on a conductive trace on an internal layer of a printed circuit board (PCB) using high density interconnect (HDI technology) are provided. The conductive trace may be coupled to a microvia (μVia) having a conductive dome disposed above the outer layer pad of the μVia. In-circuit test (ICT) fixtures or high speed test probes may interface with the conductive dome to test the high speed signal with decreased reflection loss and other parasitic effects when compared to conventional test points utilizing plated through-hole (PTH) technology.
Abstract:
Methods and apparatus relating to package embedded three dimensional baluns are described. In one embodiment, components of one or more baluns may be embedded in a single semiconductor substrate. Other embodiments are also described.
Abstract:
An opening is formed in resin 20 by a laser beam so that a via hole is formed. At this time, copper foil 22, the thickness of which is reduced (to 3 μm) by performing etching to lower the thermal conductivity is used as a conformal mask. Therefore, an opening 20a can be formed in the resin 20 if the number of irradiation of pulse-shape laser beam is reduced. Therefore, occurrence of undercut of the resin 20 which forms an interlayer insulating resin layer can be prevented. Thus, the reliability of the connection of the via holes can be improved.
Abstract:
Disclosed herein is a Ball Grid Array (BGA) package board. The BGA package board includes a first external layer on which a pattern comprising a circuit pattern and a wire bonding pad pattern is formed, a second external layer on which a pattern comprising a circuit pattern and a solder ball pad pattern is formed, an insulating layer formed between the first and second external layers, a first outer via hole to electrically connect the first and second external layers to each other, and a solder resist layer formed on each of the first and second external layers, with portions of the solder resist layer corresponding to the wire bonding pad pattern and the solder ball pad pattern being opened. The solder ball pad pattern is thinner than the circuit pattern of the second external layer.
Abstract:
An opening is formed in resin 20 by a laser beam so that a via hole is formed. At this time, copper foil 22, the thickness of which is reduced (to 3 μm) by performing etching to lower the thermal conductivity is used as a conformal mask. Therefore, an opening 20a can be formed in the resin 20 if the number of irradiation of pulse-shape laser beam is reduced. Therefore, occurrence of undercut of the resin 20 which forms an interlayer insulating resin layer can be prevented. Thus, the reliability of the connection of the via holes can be improved.