Abstract:
A light source unit including light emitting diodes mounted on a printed circuit board by not using a soldering method but a fitting method, and a backlight unit and liquid crystal display including the light source unit. The light source unit includes light emitting diodes including lead terminals and a printed circuit board including a fitting hole. Each of the lead terminals includes a base part and a fitting part protruding from the base part. The fitting part of the light emitting diode is fitted into the fitting hole of the printed circuit board and so that the light emitting diode is mounted on the printed circuit board.
Abstract:
According to the present invention, a rearview mirror comprises a first substrate having a front surface and a rear surface, a reflective coating disposed on a surface of the first substrate, and an electronic circuit component secured to the rear surface of the first substrate. The mirror element may be an electrochromic mirror element comprising a transparent second substrate positioned in front of the first substrate. The electronic component secured to the rear surface may be a component of a drive circuit for the electrochromic mirror element. The rearview mirror element may further comprise electrically conductive tracings provided on the rear surface of the first substrate electrically coupled to the electrical component. The tracings may be used to electrically couple the drive circuit to the electrodes of the electrochromic mirror element. The tracings may be deposited on the rear surface using numerous methods including inkjet printing techniques.
Abstract:
An easy-to-assembly LED and substrate providing fast assembling, simple replacement and maintenance, exchangeable arrangement of LED (3) without wiring or welding process comprises: an assembling substrate (1) having sandwich-like structure, consists essentially of a plurality of conductive layers (10) and a plurality of non-conductive layers (11); a plurality of LED (3) having at least one lead partially insulated, all conductive sections and insulated sections of said LED (3) will correspond to the arrangement of conductive layers (10) and non-conductive layers (11) of said assembling substrate (1); and a power source (4).
Abstract:
The invention relates to an arrangement comprising a shunt resistor with at least an electrically conductive first connecting leg and an electrically conductive second connecting leg. A resistance area of the shunt resistor is electrically connected to the first connecting leg and to the second connecting leg. The arrangement further comprises a circuit carrier with a first metallization and a second metallization. The first connecting leg is directly joined to the first metallization and the second connecting leg is directly joined to the second metallization. The resistance area of the shunt resistor is in thermal contact with the thermally conductive substrate by use of a thermal filler arranged between the resistance area and the substrate, and/or by directly contacting the resistance area with the substrate.The invention further relates to a method for producing an arrangement with a shunt resistor and a circuit carrier.
Abstract:
A method of making an electronic circuit device includes preparing an electronic element having at least one projection, mounting the electronic element on only a first side of a circuit board in such a manner that the projection is substantially held in point contact with the first side of the circuit board to form a gap between the circuit board and the electronic element, placing the circuit board in a mold cavity in such a manner that a second side of the circuit board is held in close contact with an inner surface of the cavity. The method further includes encapsulating the circuit board in a casing by filling the cavity with a resin material so that the gap is filled with the resin material.
Abstract:
A circuit board and a heat radiating system of the circuit board. In the circuit board, a plurality of conductive layer regions coated with a conductor are separately formed on both sides of an insulating substrate, the conductive layer region formed on either side of an insulating region on each of the both sides of the insulating substrate, the plurality of the conductive layer regions includes a plurality of through holes which penetrate through the insulating substrate and are coated with a conductor over an inner wall, the conductor in the through hole electrically conducts the coated conductor of the plurality of the conductive layer regions, one of the lead pins is connected to one of the separated conductive layer regions on the both sides based on the insulating region, and the other lead pin is connected to the other conductive layer region. Accordingly, the efficient heat radiation of the circuit board can prevent the component malfunction, the lifespan reduction, the power consumption increase, and the illuminance drop.
Abstract:
A supporting component (1) adapted for being mounted on a substrate (11) and for serving as a support for a surface mounted device (15) comprises a body (2) having a first surface (3) adapted for being mounted on the substrate (11), and a second surface (4) being adapted for supporting the surface mounted device (15). The second surface (4) is inclined in relation to the first surface (3). The supporting component (1) further comprises a first supporting component conductor (6) adapted for forming an electrical contact between a first substrate conductor (12) of the substrate (11) and a first electrode (16) of the surface mounted device (15). In a method of mounting a surface mounted device (15) in an inclined manner on a substrate (11) the supporting component (1) is mounted on the substrate (11) with the surface mounted device (15) on top of it.
Abstract:
An oscillator assembly includes an oscillator circuit that is configured to generate a frequency signal. A temperature compensation circuit is in communication with the oscillator circuit and adapted to adjust the frequency signal in response to changes in temperature. The oscillator and temperature compensation circuits are located within an oven. A heater and a temperature sensor in communication with the heater are also both located in the oven. The temperature sensor is adapted to directly control the heater in response to changes in temperature. In one embodiment, the oscillator components are mounted to a ball grid array substrate which, in turn, is mounted on a printed circuit board. In this embodiment, a resonator overlies the ball grid array substrate and a lid covers and defines an oven and enclosure for the resonator and the ball grid array substrate. The oscillator and temperature compensation circuit are defined on the ball grid array substrate.
Abstract:
A structure of a light emitting diode is provided. The light emitting diode comprises a light emitting diode die; two conductive frames electronically and respectively connecting to the cathode and anode of the light emitting diode die, and two substrates. Each conductive frame has a fixing hole and each substrate has a protrusive pillar. The upper opening of the fixing hole is broader than the bottom opening. The protrusive pillar is inserted into the fixing hole and the shape of the protrusive pillar is deformed for fitting and binding with the fixing hole.
Abstract:
An LED source for a liquid crystal display includes a heat sink having a top surface and a first side surface and a plurality of LEDs arranged in a row. Each LED includes a base and a first lead and is disposed such that the base of each LED contacts the top surface of the heat sink. A first circuit board is disposed such that the first circuit board contacts the first side surface of the heat sink.