Abstract:
A method for assembling a packaged semiconductor device includes mounting a pressure-sensing die onto a die paddle of a metal lead frame. A pressure-sensitive gel is dispensed into a recess of a lid, and the lead frame is mated with the lid such that the pressure-sensing die is immersed in the pressure-sensitive gel within the recess of the lid.
Abstract:
The semiconductor component, in particular for use as a component that is sensitive to mechanical stresses in a micro-electromechanical semiconductor component, for example a pressure or acceleration sensor, is provided with a semiconductor substrate (1,5), in the upper face of which an active region (78a,200) made of a material of a first conductivity type is introduced by ion implantation. A semiconducting channel region having a defined length (L) and width (B) is designed within the active region (78a, 200). In the active region (78a,200), each of the ends of the channel region located in the longitudinal extension is followed by a contacting region (79, 80) made of a semiconductor material of a second conductivity type. The channel region is covered by an ion implantation masking material (81), which comprises transverse edges defining the length (L) of the channel region and longitudinal edges defining the width (B) of the channel region and which comprises an edge recess (201,202) at each of the opposing transverse edges aligned with the longitudinal extension ends of the channel region, the contacting regions (79,80) that adjoin the channel region extending all the way into said edge recess.
Abstract:
A sensor package structure and method is characterized in connecting a sensor with a circuit substrate in a flip chip bonding method to enhance the structure strength and miniaturize the product; using a no-flow underfill glue to fill the gap between the sensor and the circuit substrate to protect the contacts of the flip chip structure, prevent the performance from being affected by the overflowing encapsulant, and promote the reliability of products. The present invention uses the no-flow underfill glue process to replace the processes of forming a dam and a soft protection layer and thus simplifies the fabrication process and reduces the fabrication cost.
Abstract:
A junctionless Nano-Electro-Mechanical (NEM) resonator, comprising a highly doped conductive channel connecting a drain region and a source region; the conduction channel region is movable and the overall structure is fixed at least at these two ends placed on acting the source and drain regions, respectively; at least one fixed gate electrode arranged to control a depletion charge in the highly doped conductive channel thereby modulating dimensions of a cross-section of the highly doped conductive channel. A dimension of the cross-section in the direction of an electrical field that is oriented from the fixed gate electrode to the highly doped conductive channel, is designed in such a way that it can be reduced under the effect of the depletion charge such that a full depletion in the highly doped conductive channel is achievable with the control of the fixed gate electrode.
Abstract:
In embodiments, a package assembly may include an application-specific integrated circuit (ASIC) and a microelectromechanical system (MEMS) having an active side and an inactive side. In embodiments, the MEMS may be coupled directly to the ASIC by way of one or more interconnects. The MEMS, ASIC, and one or more interconnects may define or form a cavity such that the active portion of the MEMS is within the cavity. In some embodiments, the package assembly may include a plurality of MEMS coupled directly to the ASIC by way of a plurality of one or more interconnects. Other embodiments may be described and/or claimed.
Abstract:
Structures and methods of protecting membranes on pressure sensors. One example may provide a pressure sensor having a backside cavity defining a frame and under a membrane formed in a device layer. The sensor may further include a cap joined to the device layer by a bonding layer. A recess for a reference cavity may be formed in one or more of the cap, bonding layer, and membrane or other device layer portion. The recess may have a width that is narrower than a width of the backside cavity in at least one direction. A eutectically bondable metal stack may be provided on a bottom side of the sensor. Conductive traces in the sensor may be formed by implanting and annealing ions. An implanted field shield may be formed to protect the conductive traces that form sense elements. Damage prevention circuitry and a temperature sensing diode may also be provided.
Abstract:
The application describes improvements to (MEMS) transducers (100) having a flexible membrane (301) with a membrane electrode (302), especially where the membrane is crystalline or polycrystalline and the membrane electrode is metal or a metal alloy. Such transducers may typically include a back-plate having at least one back-plate layer (304) coupled to a back-plate electrode (303), with a plurality of holes (314) in the back-plate electrode corresponding to a plurality back-plate holes (312) through the back-plate. In embodiments of the invention the membrane electrode has at least one opening (313) in the membrane electrode wherein, at least part of the area of the opening corresponds to the area of at least one back-plate hole, in a direction normal to the membrane, and there is no hole in the flexible membrane at said opening in the membrane electrode. There may be a plurality of such openings. The openings effectively allow a reduction in the amount of membrane electrode material, e.g. metal, that may undergo plastic deformation and permanently deform the membrane. The openings are at least partly aligned with the back-plate holes to minimise any loss of capacitance.
Abstract:
A method embodiment includes providing a MEMS wafer comprising an oxide layer, a MEMS substrate, a polysilicon layer. A carrier wafer comprising a first cavity formed using isotropic etching is bonded to the MEMS, wherein the first cavity is aligned with an exposed first portion of the polysilicon layer. The MEMS substrate is patterned, and portions of the sacrificial oxide layer are removed to form a first and second MEMS structure. A cap wafer including a second cavity is bonded to the MEMS wafer, wherein the bonding creates a first sealed cavity including the second cavity aligned to the first MEMS structure, and wherein the second MEMS structure is disposed between a second portion of the polysilicon layer and the cap wafer. Portions of the carrier wafer are removed so that first cavity acts as a channel to ambient pressure for the first MEMS structure.
Abstract:
The voltages output from a low-pressure MEMS sensor are increased by increasing the sensitivity of the sensor. Sensitivity is increased by thinning the diaphragm of the low pressure sensor device. Nonlinearity increased by thinning the diaphragm is reduced by simultaneously creating a cross stiffener on the top side of the diaphragm. An over-etch of the top side further increases sensitivity.
Abstract:
A micro-electromechanical apparatus with multiple chambers and a method for manufacturing the same are provided, wherein various micro-electromechanical sensors are integrated into a single apparatus. For example, the micro-electromechanical apparatus in this disclosure may have two independent hermetically sealed chambers with different pressures, such that a micro-electromechanical barometer and a micro-electromechanical accelerometer can be operated in an optimal pressure circumstance.