Abstract:
In some embodiments, a system comprises a head-mounted frame removably coupleable to the user's head; one or more light sources coupled to the head-mounted frame and configured to emit light with at least two different wavelengths toward a target object in an irradiation field of view of the light sources; one or more electromagnetic radiation detectors coupled to the head-mounted member and configured to receive light reflected after encountering the target object; and a controller operatively coupled to the one or more light sources and detectors and configured to determine and display an output indicating the identity or property of the target object as determined by the light properties measured by the detectors in relation to the light properties emitted by the light sources.
Abstract:
A multi-channel measurement device for measuring properties of human tissue, may comprise a microcontroller and first and second source/sensor complexes. The first source/sensor complex may include a first housing having a first measurement portion, a first light sensor coupled to the microcontroller and exposed to the first measurement portion, and a first plurality of light sources coupled to the microcontroller and exposed to the first measurement portion. The second source/sensor complex may include a second housing having a second measurement portion, a second light sensor coupled to the microcontroller and exposed to the second measurement portion, and a second plurality of light sources coupled to the microcontroller and exposed to the second measurement portion. The first and second source/sensor complexes are coupled to each other such that the first measurement portion is opposite the second measurement portion and human tissue may be placed between the the first and second measurement portions. The microprocessor is configured with instructions stored in non-volatile memory to individually activate each of the light sources of the first and second pluralities of light sources and to record light intensity detected by the first and second light sources while an individual light source is activated. Each combination of an individually activated light source and one of the first and second light sensors provides a distinct measurement channel for measuring the absorption spectra of human blood and tissue.
Abstract:
Disclosed is a remote spectroscopy device of the LIDAR type including a module for generating an emission signal, an emission module for sending the emission signal toward a targeted material, a receiving module for receiving a response signal and a module for postprocessing of the response signal to determine a composition of the targeted material. The generating module includes at least two laser sources, each laser source being able to generate a laser signal at a predetermined wavelength, an upstream mixer able to mix the laser signals generated by the different laser sources, and a first modulator able to modulate the composite signal at a first modulation frequency to form the emission signal.
Abstract:
To provide a plant sensor device capable of obtaining a parameter to determine a growth status other than a spectroscopy vegetation index without increasing its configuration. The plant sensor device includes a light emission part for emitting a measurement light to irradiate a target plant, a light receiving part for receiving a reflected light from the target plant, and a control section for controlling the light emission part and light receiving part. The control section determines a spectroscopy vegetation index of the target plant by obtaining a reflection rate of the target plant based on the measurement light and reflected light. The control section calculates a distance from the target plant to the light emission part in accordance with the measurement light and reflected light, and determines a plant height of the target plant based on the distance.
Abstract:
An optical sensor device includes a light emitter for emitting, to a living body, lights having two wavelengths and blinking at a predetermined frequency, and a light receiver for receiving the lights from the living body. The light receiver outputs first and second detection signals corresponding to the respective wavelengths. A filter circuit extracts, from the first and second detection signals, modulation signals that are obtained with amplitude modulation of signals of the predetermined frequency. The modulation signals are amplified by a post-amplifier and are taken into an arithmetic processing unit after being converted to digital signals by an AD converter. The arithmetic processing unit calculates DC components and AC components of the first and second detection signals by employing the modulation signals converted the digital signals.
Abstract:
A device (1) for determining the concentration of a gas component is configured with a radiation source (30) for radiating (31) light as a light emission in an infrared wavelength range. Two detector arrays (52, 62) with two detector elements (50, 60) are configured suitably for detecting the light emission generated by the radiation source (30) in two detector arrays (52, 62). Two filter elements (51, 61) are associated with the detector elements (50, 60). The two detector elements (50, 60) are oriented in relation to the radiation source, so that a range of overlap (65) is obtained due to the two detector arrays (52, 62). The range of overlap (65) causes attenuations in the propagation of light, which may be due to gas molecules or moisture (400). The attenuations in the propagation of light affect both detector elements (50, 60) and are compensated concerning the determination of the concentration.
Abstract:
An optical system having an optical sensor with an ultra-short FP cavity, and a low-resolution optical interrogation system coupled to the optical sensor and operational to send light signals and receive light signals to and from the optical sensor is disclosed. The optical system may operate in a wavelength range including the visible and near-infrared range. Optical assemblies and methods of interrogating optical sensors are provided, as are numerous other aspects.
Abstract:
For determining concentration of a targeted molecule M in a liquid sample admixed with interfering molecules MJ which overlap its absorption band, a NDIR reflection sampling technique is used. Besides the signal source, a reference and an interference source are added. M is calculated by electronics which use Rave(t) from a pulsed signal and reference channel output and a calibration curve which is validated by use of RJava(t2) from a pulsed interference and reference channel output. Signal, interference and reference sources are pulsed at a frequency which is sufficiently fast so that a given molecule of M or MJ will not pass in and out of the liquid sampling matrix within the pulsing frequency.
Abstract:
A light source and a method for its use in an optical sensor are provided, the light source including a resistively heated element. The light source includes a power circuit configured to provide a pulse width modulated voltage to the resistively heated element, the pulse width modulated voltage including: a duty cycle with a first voltage; and a pulse period including a period with a second voltage, wherein: the duty cycle, the first voltage, and the pulse period are selected so that the resistively heated element is heated to a first temperature; and the first temperature is selected to emit black body radiation in a continuum spectral range. Also provided is an optical sensor for determining a chemical composition including a light source as above.