Abstract:
A multilayer circuit board including a laminate of at least one insulating layer and at least one wiring layer. The wiring layer is formed by a composite member having a first metal layer and a second metal layer formed on one or both sides of the first metal layer. The first metal layer having a smaller coefficient of thermal expansion than the second metal layer. The second metal layer having a higher electric conductivity than the first metal layer. The insulating layer has a blind via-hole with a bottom provided by a surface of the second metal layer. A layer-to-layer interconnection portion is provided on the surface of the insulating layer and in the blind via-hole and is formed in the blind via-hole to be in contact with the surface of the second metal layer.
Abstract:
The invention relates to a power plane system for suppressing ground bounce noise. The power plane system of the invention comprises a substrate, a power layer and a ground layer. The power layer comprises a plurality of metal units. There is a distance between two adjacent metal units. A plurality of bridges is used for connecting the metal units. The ground layer has a grounding metal plate. According to the invention, when the ground bounce noise occurs, the metal units can broaden the stop-band bandwidth. Therefore, the signals in the stop-band hardly are transmitted so as to suppress the ground bounce noise, and the high frequency ground bounce noise and the electromagnetic radiation can be suppressed efficiently.
Abstract:
A printed wiring board comprises a first plane having a split formed therein and at least one signal trace disposed on a second plane. The signal trace comprises an increased width in an area of the second plane corresponding to a location of the split.
Abstract:
Method and structure for modifying the boundary conditions between edges of adjacent or nearby split power planes in a circuit layout. The modified boundary conditions reduce coupling between the power planes, which reduces noise coupling between the power planes and allows for closer spacing between the power planes. In one embodiment the modified boundary conditions include a high impedance adjacent a low impedance.
Abstract:
This invention relates to semiconductor devices and to printed circuit boards (PCB) or circuit assemblies used to electrically connect components. Delay devices are associated with the conductive traces or with integrated circuits. Delay is used to offset then realign the wave edges of propagating signals so as to minimize electric field effects on nearby signals. Impedance controlling devices are used to minimize reflections. The effects of split planes may be minimized or negated.
Abstract:
A multilayer circuit board having a high level of reliability in terms of electric connection against temperature changes caused by the actual operation of electronic equipment, a manufacturing process, a substrate for multilayer circuitry, and an electronic apparatus. The multilayer circuit board comprises a laminate of at least one insulating layer and at least one wiring layer, wherein the wiring layer is formed by a composite member comprising a first metal layer and a second metal layer formed on one or both sides of the first metal layer, the first metal layer having a smaller coefficient of thermal expansion than the second metal layer, the second metal layer having a higher electric conductivity than the first metal layer, wherein the insulating layer has a blind via-hole with a bottom provided by a surface of the second metal layer, the circuit board further comprising a layer-to-layer interconnection portion on the surface of the insulating layer and in the blind via-hole, wherein the layer-to-layer interconnection portion in the blind via-hole is formed in such a manner as to be in contact with the surface of the second metal layer.
Abstract:
A circuit board device suppress with a small number of terminal elements unwanted irradiation originating between a power supply layer and a ground layer, even when a configuration of the power supply layer and the ground layer on the circuit board is complex, and a design support device thereof. The circuit board device has a power supply layer and a ground layer disposed in opposition to one another. A dielectric is disposed between the power supply layer and the ground layer. A power supply surface is divided into two power supply surfaces and by a slit having a generally T-shaped configuration to form power supply surface edges. The power supply surface edges retain across a predetermined length L a characteristic impedance present between the power supply layer and the ground layer. A terminal load is connected to a terminal portion of the power supply surface edges.
Abstract:
An electronic package of the kind having a folded substrate is provided. The substrate is configured so that a stress concentration is created where folding is desired. In the present example, the stress concentration is created with first a resilient metal ground layer that resists bending and has an edge that promotes the creation of a stress concentration in a flexible layer at or near the edge. A second metal ground layer resists bending in another portion of the substrate, and also has an edge creating a stress concentration in a different area of the flexible layer. The portions of the substrate having the first and second resilient metal ground layers can be folded over one another with substantially no bending in these portions, while a fold portion between the edges bends to allow for folding of the substrate.
Abstract:
An integrated lead suspension includes a solder ball that is placed between a lead wiring pad provided on a flexure of the suspension, and a bonding pad provided on a slider of a head gimbal section. The lead wiring pad and bonding pad are soldered by melting the solder ball. As a result, there is provided a recessed section into which a solder ball is placed by way of surface raised sections, using gravitational force, in the vicinity of the center line of the surface of the lead wiring pad. In this way the position of the solder ball is not displaced from the center line when a bonding pad and lead wiring pad are connected by means of a solder ball.
Abstract:
The present invention provides a solid electrolytic capacitor comprising a capacitor element in which a dielectric coating layer and a cathode layer are sequentially formed on a surface of an anode element having an anode lead member planted on one end surface thereof, an anode terminal connected with the anode lead member, a platy cathode terminal mounting the capacitor element thereon and connected with the cathode layer, and an enclosure resin coating the capacitor element, a part of the cathode terminal and a part of the anode terminal being exposed on a same plane from the enclosure resin. The cathode terminal is provided with a cathode exposed portion exposed from the enclosure resin in at least two locations on the same plane.