Abstract:
The present invention is a method of forming micro through holes in printed wiring board substrate materials by means of chemical etching.In a typical printed wiring board substrate material consisting of a resinous dielectric base material, (which may or may not incorporate glass fibers), clad on both sides by a conductive layer, after the dielectric material in specific locations where through holes are to be formed is exposed by typical processes in which the conductor layer is selectively removed by etching, said exposed dielectric material is first softened, then removed by chemical etching involving several steps and procedures as well as a variety of chemical solutions, under vibratory agitation, forming through holes in said locations of 100 microns diameter or less.Employing the method of the present invention it is possible to determine the position, size and shape of the through hole required and also by means of plating to connect the conductive layers through the dielectric forming micro plated through holes in printed wiring boards.
Abstract:
A packaging substrate includes a circuit board, a number of first conductive posts, and a number of second conductive posts. The circuit board includes a first base and a first conductive pattern layer formed on a first surface of the first base. The first conductive posts extend from and are electrically connected to the first conductive pattern layer. The second conductive posts extend from and are electrically connected to the first conductive pattern layer. The height of each of the second conductive posts is larger than that of each of the first conductive posts. A manufacturing method thereof is also provided.
Abstract:
Device, system, and method of three-dimensional printing. A device includes: a first 3D-printing head to selectively discharge conductive 3D-printing material; a second 3D-printing head to selectively discharge insulating 3D-printing material; and a processor to control operations of the first and second 3D-printing heads based on a computer-aided design (CAD) scheme describing a printed circuit board (PCB) intended for 3D-printing. A 3D-printer device utilizes 3D-printing methods, in order to 3D-print: (a) a functional multi-layer PCB; or (b) a functional stand-alone electric component; or (c) a functional PCB having an embedded or integrated electric component, both of them 3D-printed in a unified 3D-printing process.
Abstract:
A method including a) forming a through-hole in a dummy substrate including a surface by radiating a laser to the surface of the dummy substrate in a state where the dummy substrate is moved relative to the laser along a direction parallel to the surface of the dummy substrate, b) determining an angle α (−90°
Abstract:
There is provided a multi layered printed circuit board. The multi layered printed circuit board according to an exemplary embodiment of the present disclosure includes: a plurality of circuit layers; insulating layers each formed between the plurality of circuit layers; and a via penetrating through the insulating layers and the circuit layers and electrically connecting the plurality of circuit layers to each other, wherein the via includes a first via and a second via, and the second via is a large diameter via having a diameter larger than that of the first via.
Abstract:
A method of manufacturing a through-hole electrode substrate includes forming a plurality of through-holes in a substrate, forming a plurality of through-hole electrodes by filling a conductive material into the plurality of through-holes, forming a first insulation layer on one surface of the substrate, forming a plurality of first openings which expose the plurality of through-hole electrodes corresponding to each of the plurality of through-hole electrodes, on the first insulation layer and correcting a position of the plurality of first openings using the relationship between a misalignment amount of a measured distance value of an open position of a leaning through-hole among the plurality of through-holes and of a design distance value of the open position of the leaning through-hole among the plurality of through-holes with respect to a center position of the substrate.
Abstract:
A system includes a device of the surface-mounting type having an insulating package provided with a mounting surface and a contact pin exposed on the mounting surface. The device is attached to an insulating board including a gluing surface and an opposite surface. The process for manufacturing the system includes forming through holes a contact region on the gluing surface. The mounting surface is glued to the gluing surface with the contact pin aligned with the contact region. Wave soldering is performed to electrically join the device to the board by hitting the opposite surface with a wave of soldering paste to form, by capillary action with the soldering paste ascending in the through holes up to the overflow on the gluing surface, a conductive contact electrically connecting the contact pin of the electronic device through a solder connection to the contact region of the electronic board.
Abstract:
A printed circuit board (PCB) includes two layers, two signal transmission traces, and a vertical interconnect access (via). The signal transmission traces are respectively arranged on the layers. The signal transmission traces are electrically connected to each other through the via. A centerline of the via with a vertical line of the layers form an acute angle θ, the angle θ is less than cos−1[(Lv2−Lt2)/(Lv2+Lt2)]. Wherein Lt is loss of the two signal transmitting traces in a unit length, and Lv is loss of the via in a unit length.
Abstract:
A support module (1), comprising a conducting layer (2) having a trough hole (5) and a receiving surface adapted to receive a solid state light source (3) with the electrical contact pad (4) being aligned with the through hole (5). The support module (1) further comprises an electrical insulation element (8) and at least one contact pin (9), extending through the electrical insulation element (8), and protruding through the through hole (5). Furthermore, the electrical insulation element (8) comprises a channel (10) allowing access to the end of the contact pin (9) and the electrical contact pad (4) of the solid state light source (3) received by the surface of the conducting layer (2). Such a channel makes it possible to reach the end of the contact pin and the contact pad through the insulation element with a soldering tool. Thus, it is possible to attach the solid state light source on a metal surface by soldering the contact pin to the contact pad. Mounting a solid state lighting device on a metal surface is advantageous in applications requiring good heat dissipation, since the heat dissipation properties of a metal surface is better than of a printed circuit board.
Abstract:
A printed circuit board includes a first signal layer, a first reference layer, a second signal layer, and a third signal layer in that order and includes a first slanted via and a second slanted via. The first signal layer includes an parallel first transmission wire and a second transmission wire. The first and second transmission wires are coupled with each other and cooperatively constitute a first differential pair with an edge-coupled structure. The second signal layer includes a third transmission wire. The third signal layer includes a fourth transmission wire parallel to and coupled with the third transmission wire. The third and fourth transmission wires cooperatively constitute a second differential pair with a broadside-coupled structure. The first slanted via obliquely are interconnected between the first transmission wire and the third transmission wire. The second slanted via obliquely are interconnected between the second transmission wire and the fourth transmission wire.