Abstract:
FPAs on a wafer can be tested prior to dicing the wafer into individual dies. A focal plane array (FPA) can comprise an array of photodetectors, such as microbolometers, on a semiconductor substrate or die. FPAs can be manufactured on a wafer to make multiple FPAs on a single wafer that can be later diced or divided into individual FPAs. Prior to dicing the wafer, the FPAs can be tested electrically and radiometrically in bulk to characterize individual FPAs, to identify bad pixels, to identify bad chips, to calibrate individual FPAs, and the like. These test results can be used to determine acceptable FPAs and can be used to provide initial settings for imaging systems with the tested and integrated FPA.
Abstract:
There is provided a terahertz wave measuring device including (1) a terahertz wave generation element that generates a terahertz wave by difference frequency generation based on excitation light that is incident to the terahertz wave generation element, the excitation light including a plurality of different wavelength components and being condensed so as to have a beam diameter of a predetermined size, (2) a structural body through which the terahertz wave is transmitted; and (3) a detector that detects an intensity of the terahertz wave that has been transmitted through the structural body, wherein the structural body includes a sample holder of a predetermined width that holds a sample, and the structural body is in close contact with or is joined to the terahertz wave generation element.
Abstract:
Operational parameters of a single-photon detector are determined with a continuous wave laser source. At a fixed trigger, a dark count probability and a series of count probabilities at different optical powers are determined. A particular optical power is selected by using a wide-range variable attenuator to attenuate the optical power of the continuous wave laser. The dark count probability and the count probabilities are determined for different trigger rates. The operational parameters include efficiency, afterpulsing constant, and detrap time. The operational parameters are computed by fitting the computed dark count probabilities and count probabilities to a user-defined relationship.
Abstract:
This optical system includes: a device (106) for generating a plane light wave, called a collimated light wave (OLcol); and a device (114) for deviating the collimated light wave so as to provide a light wave, called a test light wave (OLtest), the deviating device (114) having an adjustable focal length.
Abstract:
The present disclosure relates to an optical sensor module, an optical sensing accessory, and an optical sensing device. An optical sensor module comprises a light source, a photodetector, and a substrate. The light source is configured to convert electric power into radiant energy and emit light to an object surface. The photodetector is configured to receive the light from an object surface and convert radiant energy into electrical current or voltage. An optical sensing accessory and an optical sensing device comprise the optical sensor module and other electronic modules to have further applications.
Abstract:
A brightness calibration method used in an optical detection system includes a single source illuminator and a probe card. The single source illuminator is configured to illuminate the probe card. The probe card has a plurality of detection sites. The brightness calibration method includes: sequentially detecting brightness values at the detection sites through one of a plurality of diffusers by a sensing chip; sequentially detecting transparencies of the diffusers at one of the detection sites by the sensing chip; and selecting and respectively disposing the diffusers corresponding to larger ones of the transparencies over the detection sites corresponding to smaller ones of the brightness values, and selecting and respectively disposing the diffusers corresponding to smaller ones of the transparencies over the detection sites corresponding to larger ones of the brightness values.
Abstract:
A proximity sensor which is capable of facilitating a measure against crosstalk for different sets is provided. The proximity sensor includes a light emitting device, and a light receiving device including a plurality of light receiving parts, wherein the light receiving device has a function of arbitrarily selecting any of the plurality of light receiving parts.
Abstract:
An apparatus and methods for retrofitting known solar simulator systems to allow the exit beam to be changed in size and location without changing the other fundamental functions of the main optical elements. The solar simulator system is provided with means for de-magnifying the exit beam to provide higher power densities at the illumination plane. By adding or replacing one final optical element, the system user can change the location of the illumination plane and the size of the illumination area. This change in size can increase or decrease the power density of the exit beam.
Abstract:
Measuring the polarimetric response of an optical instrument includes the steps of: emitting light along an optical axis; receiving the light through first and second polarizers; and detecting the light received through the first and second polarizers, using a filter and a detector. A first set of measurements is obtained by measuring the intensity of light received through the first and second polarizers. A second set of measurements is obtained by placing an optical instrument along the optical axis in lieu of the filter and detector; and measuring the intensity of light received through the first polarizer, after the second polarizer has been removed. A third set of measurements is obtained using the optical instrument but having the second polarizer replace the first polarizer. The optical instrument may be characterized using the first, second and third sets of measurements. The characterization is completed without having to know the extinction ratios and the transmittance parameters of the polarizers.
Abstract:
The light measurement apparatus according to the present invention includes: an integrating sphere; a reference calibration light source body holding unit that is arranged on the integrating sphere and to which a reference calibration light source body is attached; a test light source body holding unit that is arranged on the integrating sphere and to which a test light source body to be measured is attached; a light detection unit that is arranged on the integrating sphere and detects light from the reference calibration light source body and the test light source body; and a control unit that controls lighting of the reference calibration light source body and the test light source body, the light measurement apparatus being configured so that only either one of the reference calibration light source body and the test light source body is able to selectively emit light in the integrating sphere.