Abstract:
A printed circuit board (PCB) assembly includes a first PCB and a second PCB disposed substantially parallel and opposite to each other, such that a second side of the first PCB is opposite to a first side of the second PCB; wherein the second PCB has a first set of side connectors on its first side and a second set of side connectors on its second side, configured for both electrical power supply to and signal communication with the second PCB; the second PCB both electrically and mechanically connected to the second side of the first PCB via a first elastomeric connector; and the second PCB electrically connected to the first PCB via its second set of side connectors and a flexible electrical connector that is electrically connected to the second set of side connectors and the first PCB.
Abstract:
The display module includes first and second FPC substrates disposed on top of each other. The first substrate has an IC mounted on it. The second FPC substrate has a cutout inside which the IC is disposed.
Abstract:
A circuit board assembly includes a low-frequency (LF) substrate, a monolithic microwave integrated circuit (MMIC), electrical components, a high-frequency (HF) substrate, and an antenna. The LF substrate is formed of FR-4 type material. The LF substrate defines a waveguide through the LF substrate. The MMIC is attached to the top-side of the LF substrate and outputs the radio-frequency signal. The electrical components are electrically attached to the LF substrate. The HF substrate is soldered to the top side of the LF substrate. An opening through the HF substrate surrounds the MMIC. A vertical transition guides the radio-frequency signal output by the MMIC to the waveguide. A plurality of wire bonds electrically connects the MMIC to the HF substrate and couple the radio-frequency signal from the MMIC to the vertical transition. The antenna is attached to the LF substrate and configured to radiate the radio-frequency signal from the waveguide.
Abstract:
A submount for connecting a semiconductor device to an external circuit, the submount comprising: a planar substrate formed from an insulating material and having relatively narrow edge surfaces and first and second relatively large face surfaces; at least one recess formed along an edge surface; a layer of a conducting material formed on a surface of each of the at least one recess; a first plurality of soldering pads on the first face surface configured to make electrical contact with a semiconductor device; and electrically conducting connections each of which electrically connects a soldering pad in the first plurality of soldering pads to the layer of conducting material of a recess of the at least one recess.
Abstract:
In some embodiments, an interconnectable circuit board may include one or more of the following features: (a) a first electrically conductive pad located on a top of the circuit board, (b) a plated through hole on the conductive pad which passes through the circuit board, (c) a second electrically conductive pad coupled to the plated through hole; the second conductive pad capable of being electrically connected to a third electrically conductive pad attached to a top of a second interconnectable circuit board, (d) cut marks indicating safe locations for separating the circuit board, and (e) a second cut mark adjacent to the first cut mark where the area between the first and second cut mark can be utilized to make a safe cut through the circuit board.
Abstract:
A chip package and methods of manufacturing the same are disclosed. In particular, a chip package comprising a ball grid array is disclosed in which the chip package includes a package substrate supporting the ball grid array and in which the chip package further includes a warpage control frame that helps to minimize or mitigate warpage of the chip package.
Abstract:
A high-frequency transmission line includes a laminate including dielectric layers, a first signal line provided in the laminate, a second signal line provided in the laminate and positioned on a first side in a direction of lamination relative to the first signal line, so as to cross the first signal line when viewed in a plan view in the direction of lamination, a first ground conductor positioned on a second side in the direction of lamination relative to the first signal line, a second ground conductor positioned on the first side in the direction of lamination relative to the second signal line, and an intermediate ground conductor provided between the first and second signal lines in the direction of lamination, so as to overlap with crossing portions of the first and second lines when viewed in a plan view in the direction of lamination. An area of overlap of the first ground conductor with the first signal line is smaller than an area of overlap of the second ground conductor with the first signal line. An area of overlap of the second ground conductor with the second signal line is smaller than an area of overlap of the first ground conductor with the second signal line.
Abstract:
A wireless transmission and video integrated apparatus includes a video module and a wireless module. The video module includes a hub unit, an image processing unit, an image acquisition unit, a microphone unit, an expansion interface and a transmission interface. The wireless module includes a connection interface, a wireless communication unit and an antenna unit. The wireless module is electrically connected to the expansion interface of the video module through the connection interface. The video module and the wireless module are integrated as a whole, and then are electrically connected to an external electronic apparatus through the transmission interface of the video module, so that assembling the wireless transmission and video integrated apparatus into the electronic apparatus is quick.
Abstract:
A stackable layer is provided for 3-Dimensional multi-layered modular computers. The stackable layer comprises at least one encapsulated chip die. Sets of electrical contacts are provided on each one of the large surfaces of the layer. The encapsulated chip die and the two large opposite surfaces of the layer are substantially parallel.
Abstract:
Described are apparatuses for modular printed circuit boards (PCB) and methods for producing modular PCBs. An apparatus may include a first PCB module with a first pattern of routing structures on one or more layers of the first PCB module. The apparatus may further include a second PCB module with a second pattern of routing structures on one or more layers of the second PCB module. The second pattern of routing structures may be aligned with and electrically coupled to the first pattern of routing structures without connectors. Other embodiments may be described and/or claimed.