Abstract:
A printed circuit head interconnect of a head gimbal assembly (HGA) has different material thicknesses in different regions of the printed circuit head interconnect. The printed circuit head interconnect includes a lamination sheet of materials having dielectric materials and conductive materials. The regions which need to have a lower stiffness are made thinner than the rest of the regions. The rest of the regions are made thick and robust enough to support the HGA. A method of reducing the thicknesses of the printed circuit head interconnect includes applying a resist mask pattern having a plurality of openings with different sizes so as to obtain different thicknesses of the materials in different regions of the printed circuit head interconnect.
Abstract:
A printed circuit board includes a first wiring line and a second wiring line spaced apart from the first wiring line. The first wiring line has a first portion having a surface which faces the second wiring line and is smaller in area than that of the second portion, so that a crosstalk noise between the first portion of the first wiring line and the second wiring line can be reduced.
Abstract:
A multilayer resin wiring board includes a metal core substrate having a first main surface and a second main surface; a plurality of wiring layers located on the first and second main surfaces of the metal core substrate; a plurality of insulating resin layers, each intervening between the metal core substrate and the wiring layers and between the metal core substrate and the wiring layers and between the wiring layers; and a via formed on the wall of a through hole for connection to the metal core substrate extending through the insulating resin layers and the metal core substrate so as to establish electrical conductivity to the metal core substrate. The metal core substrate has a thin portion which is thinner than the remaining portion of the metal core substrate. The through hole for connection to the metal core substrate is formed through the thin portion by laser machining.
Abstract:
A metal is formed at a rear surface of a substrate, the substrate also having a front surface at which a molded semiconductor chip is mounted. The metal pattern is covered with an insulating film, except for at a connecting area. A solder ball is bonded to the connecting area. The area of the metal pattern other than the connecting area inclines toward the substrate and gradually becomes thinner toward the outside thereof. Stress, which is applied to the solder ball, is imparted in a diagonal direction and is dispersed. As a result, the number of occurrences of cracks is reduced, and the solder ball which is used to achieve connection with an external substrate, is effectively prevented form becoming electrically disconnected.
Abstract:
A wired ceramic board has on a main surface of a ceramic substrate thereof a plurality of bonding pads each of which has a projection having a solderable outer surface and positioned inside an outer periphery of each bonding pad when observed in a plan view. To each bonding pad is bonded a solder ball by using solder which is lower in melting point than the solder ball. The ceramic board and a resinous printed board are placed one upon another in such a manner that their bonding pads are aligned with each other. The bonding pads are soldered together with low melting point solder. The projection of each bonding pad is embedded in or surrounded by a mass of low melting point solder and joined with the mass of solder to constitute an integral unit while serving as a core of the unit. A shearing force acting on the assembly of the ceramic board and the plastic or resinous board parallel to the main surface of the ceramic board due to a temperature variation is applied by way of the mass of solder to the projection to be supported thereby, whereby to prevent initiation and growth of a crack or cracks in the mass of solder.
Abstract:
A printed circuit board having juxtaposed thereon in parallel plural conductive paths, at least a part of which has a different length, extending from one end side to the other end side, wherein the electric resistances of the conductive paths are made substantially same by changing the width of at least a part of the conductive paths.
Abstract:
A method of forming a multilayered wiring board having a multilayered wiring structure includes the steps of forming a first mesh wiring layer having a plurality of holes therein, and forming a second wiring layer having a plurality of wirings undulating up and down so as to descend into the holes formed in the first wiring layer. In another method, the first wiring layer is formed with a plurality of protrusions and the wirings of the second wiring layer are formed between the protrusions. In the wiring boards formed according to the methods of the present invention, crosstalk between the wirings is suppressed.
Abstract:
The method of manufacturing an electrostatic printhead or the like. Conductive surfaces are applied to both sides of an insulating substrate. Unneeded portions of the conductive surface are etched away by a photolithographic process to form conductive layers in patterns of parallel, spaced, printwire traces and connective conductors with ends of the printwire traces terminating in a common plane defining a printface of the printhead. Additional conductive material is added to the printwire traces by an additive plating process to give them a substantially square cross-section. The edge is laser trimmed to form the print face. Insulative layers are added over both sides with vias located over the connective conductors at places where electrical connection is to take place. A plurality of conductive busses are then formed on the insulative layers crossing over the connective conductors and vias with conductive material formed in the vias to make the desired electrical connections between the connective conductors and the busses.
Abstract:
The invention comprises a connection array for establishing a plurality of electrical connections between circuit pads of a support, such as a circuit board, and contacts of an electrical housing, such as a hermetic chip carrier, wherein the contacts comprise semi-circular vertical indentations in the housing periphery with each indentation having a conductive layer therein. A plurality of pillars, which may be electroplated, extend vertically above the support in an array respectively corresponding to the outline of the indentations with each pillar being connected to different pad of the support and the pillars having dimensions to permit at least partial entry into the indentations whereby solder may be introduced between the pillars and associated conductive layers to establish visible and inspectable electrical connections therebetween.
Abstract:
Narrow conductors and narrow spaces therebetween, typically two or three mils wide, are fabricated on outer layers of a printed wiring board with built-up areas such as plated-through holes or conductors of widths greater than two or three mils. Gold is deposited over a copper clad substrate in a pattern defining the desired circuitry. Thereafter, solder is placed at the built-up areas and, using both the solder and the gold as resist or masks, the exposed copper is removed by etching. An organic resist material is used in lieu of solder when the built-up area comprises wide conductors or leads, e.g., power busses.