Abstract:
The present invention provides a colorimeter apparatus for a color printer ink capable of rapidly measuring the colors of a color patch portion in an online mode. The light of a xenon light source 21 is directed via an optical fiber 22 and a condenser lens 23 to a zone through which a color patch 53 passes. Reflected light is condensed by a telecentriclens system 14 and focused on the light-receiving surface of a Linear Variable Filter 11. The light is spectrally divided by the Linear Variable Filter 11 and guided toward a linear sensor 13 via a fiber optic plate (FOP) or collimator 12. The output of the linear sensor 13 is converted to an analog signal by an analog signal generator 14 and sent to a signal processor 3. In the signal processor 3, a spectral reflectance factor is calculated based on the resulting spectral reflectivity, and a color or color difference is calculated based on this value and a prestored formula for color systems or color differences.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
A method and a system for controlling a RBG based LED luminary which tracks the tristimulus values of both feedback and reference whereby the forward currents driving the LED luminary are adjusted in accordance with the errors between the feed tristimulus values and the reference tristimulus values until the errors are zero.
Abstract:
A low cost yet higher speed color spectrophotometer, especially suitable for on-line color printer color control systems, wherein multiple test patches of different colors may be simultaneously illuminated and substantially simultaneously discretely color analyzed. Reduced numbers of test print sheets, with multiple sets of multiple small adjacent different color test patches, may be used. Reflected images of the multiple different color test patches may be simultaneously focused on different areas of a photodetector chip to expose differently color responsive sets of multiple photo-sites to provide plural discrete color signals for each different color test patch image.
Abstract:
A dual wavelength focal plane has a first array of infrared sensing pixel elements and a second array of visible light pixel elements adapted to be selective to colors encountered while driving an automobile. The second array is selective to the colors red, blue and green, so being selective to traffic control signals, including brake lights of other automobiles. The arrays are vertically stacked on a monolithic silicon substrate. The arrays are electrically coupled to a processor and display to integrate the infrared and color pixel elements into a view for a driver of the automobile.
Abstract:
The making and use of color microlenses in color image sensors and color display devices is described and claimed. The color microlenses combine the function of a colorless microlens and a color filter into a single structure simplifying the fabrication of, and increasing the reliability of display devices and image sensors using the described color microlenses.
Abstract:
A handheld, pen-like colorimeter for measuring the color of an object is provided. The calorimeter comprises several light emitters, each with distinct color spectra, wherein the emission of each color is modulated at a specific frequency. These light emitters may be Ligh Emitting Diodes (LEDs) and/or lasers. The calorimeter also contains at least one light sensor which samples light reflected from an object illuminated by the light emitters. The rate of sampling is at least twice the modulation frequency of the emitted light. A microprocessor computes the fourier transform of the intensity of the reflected light over time, wherein the fourier transform provides the light intensity at each possible modulation frequency and determines the relative contribution of the reflected light from each light emitter, as well as the contribution of ambient light. The modulation frequency of the light emitters is adjusted to account for the modulation frequency of artificial, ambient light. A color value based on the fourier transform of the reflected light is calculated and then mapped to a list of color values from which a color name is selected and presented to the user.
Abstract:
An image-splitting color meter. The image-splitting color meter is added at an entrance pupil of a light coming from an observing object to obtain a high uniformity and a high efficiency. The image-splitting device can split the entrance pupil into several partitions for light splitting and color filtering. The split light beams are then converged and focused onto a photodetective plane.
Abstract:
A method and apparatus for color measurement using a physically distributed multiplicity of sensors. Broad band illumination is provided to irradiate a test pattern. The sensors are used to measure color characteristics of discrete areas of a region of the pattern that has an intended single color by providing the pattern and sensors arrayed in a substantially matching geometric configuration.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed. Spectrometers and spectrophotometers embedded in printing and scanning and other type devices, as well as computer companion devices, scope-type devices and the like, also are disclosed. Data encoding based on such devices also may be implemented.