Abstract:
An electrical connector assembly includes a circuit board and an electrical connector mounted on the circuit board. The circuit board has a circuit board body having first and second surfaces and through-holes bored between the first and second surfaces. The circuit board has signal traces on internal layers of the circuit board that are generally parallel to the first and second surfaces. Portions of the circuit board body within the through-holes are etched away to expose portions of the signal traces beyond the circuit board body within the corresponding through-hole. The electrical connector includes a housing and signal terminals held by the housing. The signal terminals are received in respective through-holes of the circuit board and engage the corresponding signal traces.
Abstract:
The invention provides an amplification module for an optical printed circuit board, the optical printed circuit board comprising plural polymer waveguide sections from independent waveguides, each of the sections being doped with an amplifying dopant, wherein the plural waveguide sections are routed so as to pass through an amplification zone in which the plural polymer waveguide sections are arranged close or adjacent to one another, the amplification module comprising: a pump source comprising plural light sources arranged to provide independently controllable levels of pump radiation to each of the plural waveguide sections. In an embodiment, the amplification module also includes plural polymer waveguide sections corresponding to the plural polymer waveguides of the printed circuit board on which in use the amplification module is to be arranged, each of the sections being doped with an amplifying dopant.
Abstract:
Disclosed herein is a printed circuit board facilitating expansion of number of memory modules and memory system including the same. The printed circuit board of the present invention includes a plurality of slots and a plurality of controller terminals. Each of slots disposed in locations ranging from a 2n−1+1th location to a 2nth location with respect to the controller terminals includes 2k−n module terminals connected to the module terminals of slots ranging from the slot disposed in the first location to a slot disposed in a 2n−1th location; wherein, in the printed circuit board and memory system including the printed circuit board according to the present invention, dummy modules are not required to expand the number of memory modules. Further, according to the printed circuit board of the present invention, the expansion of the number of memory modules is facilitated.
Abstract:
Embodiments of the present technique are directed to a backplane infrastructure. The backplane infrastructure may include a passive power backplane configured to distribute power and comprising a first set of alignment holes, a signal backplane configured to route interface signals and comprising a second set of alignment holes and a set of common alignment pins, each alignment pin having an axis, wherein the set of common alignment pins are inserted into the first set of alignment holes and the second set of alignment holes to align the passive power backplane and the signal backplane about the axis.
Abstract:
An electrical connector assembly includes a connector having a connector housing and contacts held by the connector housing, where the contacts defining a separable mating interface for mating with a mating component. An actuator engages the contacts and is movable between an actuated position and an unactuated position. The contacts are deflected relative to the connector housing when the actuator is moved to the actuated position. An actuation device is configured to move the actuator between the actuated position and the unactuated position.
Abstract:
The disclosure relates to a detachable signalling interconnect apparatus that provides connectivity between two or more components of a memory system in conjunction with different modes of operation of the components. The memory system comprises: a first socket to receive a first memory module; a second socket to receive a second memory module; a detachable signal-interconnect; and a memory controller coupled to the detachable signal-interconnect and configured to define a first mode of operation and a second mode of operation, wherein in the first mode of operation the detachable signal-interconnect is to couple the memory-controller to the first memory module and in the second mode of operation the detachable signal-interconnect is to couple the memory controller to the first memory module and the second memory module.
Abstract:
An apparatus electrically interconnects pins that project from the rear side of a backplane in separate arrays corresponding to respective circuit boards at the front side of the backplane. The apparatus comprises a connector board assembly extending across the rear side of the backplane between separate arrays of pins. The connector board assembly has signal routing circuitry that electrically interconnects those separate arrays of pins. This enables the respective printed circuit boards to be electrically interconnected independently of any signal routing circuitry within the structure of the backplane. Accordingly, the apparatus preferably includes a backplane that is free of signal routing circuitry for interconnecting pins that extend through the backplane.
Abstract:
An exemplary motherboard includes a driving module, at least two first slots arranged for mounting two first type of memories, at least two second slots arranged for mounting two second type of memories, and a voltage regulator. The driving module is electronically connected to the at least two first slots, the at least two second slots, and the voltage regulator in turn via a channel. The first type of memories and the second type of memories are alternatively mounted on the motherboard, the voltage regulator detects which type memory is currently mounted on the motherboard and outputs voltages suitable for the type of memory mounted on the motherboard accordingly.
Abstract:
An electrical connector assembly couples a circuit board with at least one of a motherboard and a backplane board. The connector assembly includes a connector and a flexible circuit member. The connector has a mating interface and a mounting interface. The mating interface electrically couples the connector with the circuit board. The mounting interface secures the connector to the motherboard. The flexible circuit member electrically interconnects the mating and mounting interfaces with one another and with at least one of the motherboard and the backplane board. The flexible circuit member electrically interconnects the circuit board with the backplane board via a conductive pathway that bypasses the motherboard.
Abstract:
A backplane arrangement is provided for an electronic mounting rack with a base backplane with several contact strips, wherein a free space, into which at least one additional backplane can be inserted, is provided on the base backplane.