Abstract:
A printed circuit board (PCB) assembly includes a first PCB and a second PCB disposed substantially parallel and opposite to each other, such that a second side of the first PCB is opposite to a first side of the second PCB; wherein the second PCB has a first set of side connectors on its first side and a second set of side connectors on its second side, configured for both electrical power supply to and signal communication with the second PCB; the second PCB both electrically and mechanically connected to the second side of the first PCB via a first elastomeric connector; and the second PCB electrically connected to the first PCB via its second set of side connectors and a flexible electrical connector that is electrically connected to the second set of side connectors and the first PCB.
Abstract:
A connector assembly adapted to be disposed in a casing of an electronic device is provided. The connector assembly includes a connector and a locking member. The locking member includes a supporting portion and a holding portion connected to the supporting portion. The connector is disposed on the supporting portion. The locking member is adapted to clamp at an end of a substrate disposed in the casing, and the supporting portion and the holding portion lean against an upper side and a lower side of the end of the substrate respectively. An electronic device including the connector assembly aforementioned is also provided.
Abstract:
An electronic circuit includes a conductor path on a circuit board, and at least one SMD component, electronic component and/or electromechanical component mounted on the circuit board and connected to the conductor path. A circuit connection is established via a soldered joint and a spring-loaded or stressed springy contact bridge that provides fuse protection. In the event of excessive power dissipation or high temperature, the soldered joint melts or softens and the contact bridge springs open to interrupt the circuit.
Abstract:
A low profile heat removal system suitable for removing excess heat generated by an integrated circuit operating in a compact computing environment is disclosed.
Abstract:
A structure and method for manufacturing the same for manufacturing a contact structure for microelectronics manufacturing including the steps of forming first and second metal sheets to form a plurality of outwardly extending bump each defining a cavity. Symmetrically mating the first and second metal sheets in opposing relation to each other to form upper and lower bumps each defining an enclosure therebetween wherein the mated first and second sheets form a contact structure. Coating the contact structure with an insulating material, and fabricating helix shaped contacts from upper and lower bumps. The helix shaped contacts having first and second portions being in minor image relationship to each other.
Abstract:
The present invention relates to an FPC connector for electrically connecting an FPC to contact portion of a wirings printed on a PCB, and to an FPC connection method using the same, wherein an FPC (10) is inserted into a housing (110) so that the contact portion of the FPC (10) may come in direct contact with a contact portion (2a) of the PCB, and an pressing member pressing the FPC (10) on the PCB so as to directly contact the FPC (10) to the PCB (1).
Abstract:
In some embodiments, coaxial plated through holes (PTH) for robust electrical performance are presented. In this regard, an apparatus is introduced comprising an integrated circuit device and a substrate coupled with the integrated circuit device, wherein the substrate includes: a plated through hole, the plated through hole filled with dielectric material and a coaxial copper wire, and conductive traces to separately route the plated through hole and the coaxial copper wire. Other embodiments are also disclosed and claimed.
Abstract:
A strain-resistant electrical connection and a method of making the same is provided. An antenna (36, 38) or other conductive lead is connected to a circuit (32) in a manner that makes the connection more resistant to mechanical stresses such as movement or rotation of the antenna (36, 38) or conductive lead relative to the circuit (32). The antenna (36, 38) or conductive lead is at least partially coiled to provide additional ability to withstand mechanical stresses. The antenna (36, 38) or conductive lead may be encase along with is connected circuit in an elastomeric material.
Abstract:
A method and system for transporting a fluid, gas, semi-solid, cryogen, or particulate matter, or combination thereof, between a three-dimensional structure and a substantially two-dimensional structure is disclosed. A system and method for electrically coupling a three-dimensional structure to a substantially two dimensional structure is also disclosed.
Abstract:
Disclosed herein is a flexible printed circuit board (PCB) of a spindle motor. The flexible PCB includes a solder part, an upper reinforcing plate, a lower reinforcing plate, and a soldering part. The solder part has a through hole so that a coil extending from a stator core passes through the solder part, and has a separation part which is open or closed only in one direction along with the through hole. The upper reinforcing plate supports the upper portion of the separation part. The lower reinforcing plate supports the lower portion of the solder part, and has an elliptical through hole which partially overlaps with the through hole so that the coil passes through the lower reinforcing plate. The soldering part is formed to enable the coil to be secured to the solder part.