Abstract:
The present disclosure provides for a system and method for aerial detection, identification, and/or tracking of unknown ground targets. A system may comprise collection optics, a RGB detector, a SWIR MCF, a SWIR detector, and a sensor housing affixed to an aircraft. A method may comprise generating a RGB video image, a hyperspectral SWIR image, and combinations hereof. The RGB video image and the hyperspectral SWIR image may be analyzed to detect, identify, and/or track unknown targets. The RGB video image and the hyperspectral SWIR image may be generated simultaneously.
Abstract:
A detection system which provides for continuous background estimation removal from a sequence of spectra. A panoramic field of regard may be partitioned into a large number of fields of view (FOVs). An FOV may have a chemical vapor cloud. The small FOV may maximize detection of the cloud. Such detection may require removing the spectral characteristics other than that of the target cloud. This may amount to removal of background spectra with an estimated background developed from one or more FOVs which may or may not be similar to the background of the FOV with the target cloud. A number of estimated background spectra of the other FOVs may be used individually to greatly increase the detection probability of the target chemical.
Abstract:
A system and method for detection of explosive agents using hyperspectral imaging. A system comprising an illumination source, a spectral encoding device, and at least one imaging detector configured for at least one of SWIR and MWIR hyperspectral imaging of a target comprising an unknown material. A method comprising illuminating a target comprising an unknown material, assessing interacted photons using a spectral encoding device, and detecting interacted photons using at least one of SWIR hyperspectral imaging and MWIR hyperspectral imaging. Algorithms and chemometric techniques may be applied to assess the MWIR hyperspectral image to identify the unknown material as comprising an explosive agent or a non-explosive agent. A video imaging device may also be configured to provide a video image of an area of interest, which may be assessed to identify a target for interrogation using SWIR and MWIR hyperspectral imaging.
Abstract:
An angle restriction filter that allows light incident thereon in a predetermined range of incident angles to pass, includes: an optical path wall section formed from a plurality of light shield members laminated in layers including a common material, thereby forming an optical path in a lamination direction of the light shield members; and a light transmission section formed in a region surrounded by the optical path wall section.
Abstract:
An optical spectrum analyzer is implemented with a detector combined with a tunable filter mounted on a stage capable of 360-degree rotation at a constant velocity. Because of the constant rate of angular change, different portions of the input spectrum are detected at each increment of time as a function of filter position, which can be easily measured with an encoder for synchronization purposes. The unidirectional motion of the mirror permits operation at very high speeds with great mechanical reliability. The same improvements may be obtained using a diffraction grating or a prism, in which case the detector or an intervening mirror may be rotated instead of the grating or prism.
Abstract:
An optical spectrum analyzer is implemented with a detector combined with a tunable filter mounted on a stage capable of 360-degree rotation at a constant velocity. Because of the constant rate of angular change, different portions of the input spectrum are detected at each increment of time as a function of filter position, which can be easily measured with an encoder for synchronization purposes. The unidirectional motion of the mirror permits operation at very high speeds with great mechanical reliability. The same improvements may be obtained using a diffraction grating or a prism, in which case the detector or an intervening mirror may be rotated instead of the grating or prism.
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
An optical emission spectroscopic system contains multiple distinct light paths that provide increased light to a spectrometer, thereby increasing sensitivity and signal-to-noise of the system.
Abstract:
A microscopic-measurement apparatus capable of conducting measurement successively in several set areas regardless of the type of stage driving system or the precision of the stage driving system. The microscopic-measurement apparatus for acquiring optical information from desired portions of a sample by moving a measuring optical axis on a surface of the sample includes an observation-image display section for displaying a sample surface image as an observation image, in a range of visual field which is observable at a present sample position; an optical-axis display section for displaying areas to be measured and a present position of the measuring optical axis in an overlapped state with the observation image; an area setting section capable of setting measuring areas by expanding, reducing, changing in shape and moving the areas to be measured; and an optical-information acquisition section for measuring one set measuring area or several set measuring areas successively with an instruction of starting measurement.
Abstract:
A method includes generating at least one first light beam and generating at least one second light beam and at least one third light beam using the at least one first light beam. The at least one first light beam has a plurality of first regions, the at least one second light beam has a plurality of second regions, and the at least one third light beam has a plurality of third regions. Each of the first, second, and third light beams has at least two regions that are spectrally different. The method also includes measuring a spectrum in each of a plurality of first wavelength bands for each of the second regions. The method further includes illuminating at least part of an object with the at least one third light beam to produce at least one fourth light beam. The at least one fourth light beam has a plurality of fourth regions, where at least two of the fourth regions are spectrally different. In addition, the method includes measuring a spectrum in each of a plurality of second wavelength bands for each of the fourth regions and identifying a radiance transfer factor of the object using at least some of the measured spectra.