Abstract:
An interconnect for testing semiconductor components includes a substrate, and contacts on the substrate for making temporary electrical connections with bumped contacts on the components. Each contact includes a recess and a pattern of leads cantilevered over the recess configured to electrically engage a bumped contact. The leads are adapted to move in a z-direction within the recess to accommodate variations in the height and planarity of the bumped contacts. In addition, the leads can include projections for penetrating the bumped contacts, a non-bonding outer layer for preventing bonding to the bumped contacts, and a curved shape which matches a topography of the bumped contacts. The leads can be formed by forming a patterned metal layer on the substrate, by attaching a polymer substrate with the leads thereon to the substrate, or be etching the substrate to form conductive beams.
Abstract:
A system and method is disclosed for improving solder joint reliability in an integrated circuit package. Each terminal of a quad, flat, non-leaded integrated circuit package is formed having portions that define a solder slot in the bottom surface of the terminal. An external surface of the die pad of the integrated circuit package is also formed having portions that define a plurality of solder slots on the periphery of the die pad. When solder is applied to the die pad and to the terminals, the solder that fills the solder slots increases the solder joint reliability of the integrated circuit package.
Abstract:
The field of the manufacture of electronic components, specifically to manufacturing flexible conductive strips having contact pads thereon, wherein a first set of alignment marks are provided on a substrate. Using the first set of alignment marks, several electronic components are formed in selected positions on the substrate. The electronic components may be formed in various groups, with a first group being formed using a first mask then, subsequent groups being formed using subsequent masks. Each of the respective masks are aligned with the first set of alignment marks in order to position the electronic components formed using the masks at the desired locations on the substrate. A second set of alignment marks are produced using the same mask as a set of electronic components that are located on the substrate. Subsequently, when a different set of features is produced, it is positioned using the second set of alignment marks located on the individual parts. Thus, tolerances can be achieved that would normally be possible only in the manufacture of individual parts, while still obtaining the advantages of the economies of scale possible by making many parts on a large sheet.
Abstract:
A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
Abstract:
A method is proposed for fastening at least one electrical component to a substrate using solder, in which elevations are produced in the solder substrate, the elevations being at least as high as the thickness of a solder layer to be produced, in a further step the solder, especially a solder foil, is laid upon the elevations, and in a further step, the elevations are pressed down until they have reached approximately the height of the solder, so that a soldering procedure may follow. The method is used for producing exactly specified thicknesses of solder layers having tolerances less than 10 micrometer.
Abstract:
Improved thermal conductivity in printed wiring boards can be achieved without resorting to the use of dedicated thermally conductive components such as thermal vias and heat sinks. Instead, electrically functional vias, through holes, pads, and traces are modified to improve their thermal conductivity. Such modifications include thickly plating the walls of through holes or vias, possibly to the point where the via or through hole is completely filled, and also include de-planarazing the surfaces of pads and traces.
Abstract:
The flexible connector for high density circuit applications comprises a multilayer flexible substrate upon which are formed a plurality of contact pads, in a density required by a particular application. This density may exceed two hundred contact pads per square inch. Contact pads of similar size and configuration are formed on the surface of another device, i.e., circuit board, and provision made to align the contact pads of the connector with those of the circuit board. Micro-pads are formed on the surface of the contact pads on the connector such, that when the connector is brought into contact with the circuit board, and sufficient pressure is applied, the micro-pads make actual electrical contact with the pads of the circuit board. Since the total surface area in contact, namely the sum of the surface areas of the micro-pads, is a small fraction of the total area of the connector, a large pressure is provided at the electrical contact interface even when low pressure is provided to the connector as a whole.
Abstract:
An electronic device includes a standard dielectric material and a lossy material integrated with the standard dielectric material to selectively control the distributed resistance of the standard dielectric material. The lossy material may be inserted into the standard dielectric material. The inserted material may be resistive particles, carbon particles, open cell conductive foam, carbon impregnated open cell conductive foam, and the like. The lossy material may also be a loss inducing physical structure attached to the standard dielectric material. The loss inducing physical structure may be a planar resistive layer attached to the standard dielectric material. The planar resistive layer may have an extended surface to attenuate high frequency signals.
Abstract:
A grid interposer for testing electrical circuits and a method of making a grid interposer. The grid interposer includes upper and lower conductive surfaces sandwiched on either side of an insulating later, connected to each other by a plurality of vias filled with conductive material. The conductive surfaces are flat topped, and incised with a grid of flat topped peaks which are small enough to cut through oxidation of electrical contacts, and ensure good electrical contact with a variety of electrode shapes.
Abstract:
Resistive materials having resistivities that are axis dependent are provided. Such resistive materials having a resistivity in a first direction and a very different resistivity in an orthogonal direction. These resistive materials are particularly suitable for use as resistors embedded in printed wiring boards.