Abstract:
Present embodiments are directed to a battery module including a venting assembly and a method of manufacturing the battery module. The venting assembly may, in certain embodiments, be designed to vent gases from a plurality of battery cells disposed in a housing of the battery module. Each of the plurality of battery cells may include a battery cell vent. The venting assembly may include a lid designed to be coupled to the housing and disposed over the battery cells in the housing. In some embodiments, the lid includes a vent chamber formed in the lid and designed to receive and direct gases vented from the plurality of battery cells away from the battery module.
Abstract:
According to various embodiments, a chip arrangement may be provided, the chip arrangement may include: a first carrier; at least one chip arranged over the first carrier; a flexible structure including a wiring layer structure; and a contact structure arranged between the first carrier and the wiring layer structure, wherein the at least one chip is electrically coupled to the first carrier via the wiring layer structure and the contact structure.
Abstract:
An object of the present invention is to allow stress that may be applied to a semiconductor package to be suppressed, when the semiconductor package is mounted on a curved board. In a mount board 1, a semiconductor package 20 is mounted on a curved board 10 including a curved surface on at least a portion thereof. The curved board 10 includes a pedestal portion 13a disposed on a region of the curved surface portion where the semiconductor package 20 is mounted and having an upper surface thereof formed flat, and a plurality of pad portions 15a disposed on the flat surface of the pedestal portion 13a. The pedestal portion 13a is formed of an insulating material. The semiconductor package 20 is mounted on the pad portions 15a.
Abstract:
A wiring board includes a substrate having an opening portion, electronic components positioned in the opening portion of the substrate and including first and second electronic components, and an insulation layer formed over the substrate and the first and second components. The first component has first and second electrodes having side portions on side surfaces of the first component, the second component has first and second electrodes having side portions on side surfaces of the second component, the first electrode of the first component and the first electrode of the second component are set to have substantially the same electric potential, and the first component and the second component are positioned in the opening portion of the substrate such that the side portion of the first electrode of the first component is beside the side portion of the first electrode of the second component.
Abstract:
Apparatuses and methods related to the field of microchip assembly and handling, in particular to devices and methods for assembling and handling microchips manufactured with solid edge-to-edge interconnects, such as Quilt Packaging® interconnect technology. Specialized assembly tools are configured to pick up one or more microchips, place the microchips in a specified location aligned to a substrate, package, or another microchip, and facilitate electrical contact through one of a variety of approaches, including solder reflow. This specialized assembly tooling performs heating functions to reflow solder to establish electrical and mechanical interconnections between multiple microchips. Additionally, the interconnected microchips may be arranged in an arbitrarily large array.
Abstract:
A microelectronic package can include wire bonds having bases bonded to respective conductive elements on a substrate and ends opposite the bases. A dielectric encapsulation layer extending from the substrate covers portions of the wire bonds such that covered portions of the wire bonds are separated from one another by the encapsulation layer, wherein unencapsulated portions of the wire bonds are defined by portions of the wire bonds which are uncovered by the encapsulation layer. Unencapsulated portions can be disposed at positions in a pattern having a minimum pitch which is greater than a first minimum pitch between bases of adjacent wire bonds.
Abstract:
A power train assembly is provided. The power train assembly includes a component package including a first transistor having a first gate, a first drain, and a first source, a second transistor having a second gate, a second drain, and a second source, and a thermal pad configured to dissipate heat generated in the component package, wherein the thermal pad is electrically coupled to the first source and the second drain. The power train assembly further includes a printed circuit board (PCB) electrically coupled to the component package, and an electrical component electrically coupled directly to the thermal pad, wherein the electrical component is external to the component package.
Abstract:
A printed circuit board (PCB) includes a base board, a number of electronic components and at least one radio frequency identification (RFID) tag. The electronic components are mounted on the base board. The at least one RFID tag is attached to one or more of the electronic components, and is programmed with identification information of the PCB.
Abstract:
The present invention relates to a substrate structure having electronic components and a method of manufacturing a substrate structure having electronic components and can reduce signal loss and internal resistance and improve process efficiency by bringing a first terminal of a first electronic component and a second terminal of a second electronic component in direct contact with each other or in direct contact with each other by solder to minimize a path between the electronic components.
Abstract:
A semiconductor stack and a semiconductor base device with a wiring substrate and an intermediate wiring board for a semiconductor device stack is disclosed. In one embodiment, a semiconductor chip is arranged between the intermediate wiring board and the wiring substrate, which is electrically connected by way of the wiring substrate on the one hand to external contacts on the underside of the wiring substrate and on the other hand to contact terminal areas in the edge regions of the wiring substrate. The intermediate wiring board has angled-away external flat conductors, which are electrically connected in the contact terminal areas of the wiring board. Furthermore, on the upper side of the intermediate wiring board, arranged on the free ends of the internal flat conductors are external contact terminal areas, which correspond in size and arrangement to external contacts of a semiconductor device to be stacked.