Abstract:
To strengthen a flying lead portion of a long-tail flexible printed circuit (FPC) integrally formed with a flexure, stacked support portions of resin layers on both sides of a flying lead 7 of a long-tail FPC 6 are reinforced with metal frames 14. A fold-back portion 9 of the long-tail FPC 6 is folded back at 90 degrees so that flying lead 7 is disposed parallel with a turning shaft 21 of a carriage 20. The flying lead is then joined to a connection pad 26 on a main FPC board 24 using solder 18.
Abstract:
In order to provide a wired circuit board in which electrical continuity inspection can be omitted and a connection structure of the wired circuit board, in connection between a first wired circuit board 1 and a second wired circuit board 2, a first connection terminal 13 and a second connection terminal 14 are abutted against each other in the direction in which they are opposed along the respective longitudinal direction of the wired circuit boards, and are arranged in line with each other, and a solder bump 15 is provided so as to continuously extend over surfaces of the first connection terminal 13 and the second connection terminal 14. Consequently, the solder bump 15 is not interposed between opposed surfaces of the first connection terminal 13 and the second connection terminal 14, thereby allowing electrical connection by the solder bump 15 between the first connection terminal 13 and the second connection terminal 14 to be confirmed from the appearance by visual observation.
Abstract:
A method and structures are provided for implementing enhanced reliability for printed circuit board high power dissipation applications. An external return current member provides a return current path outside of the printed circuit board, thereby minimizing power dissipation within the printed circuit board. The external return current member can be implemented with an associated stiffener formed of electrically conductive material. Alternatively, the external return current member can be implemented with a sheet of electrically conductive material with an insulator provided between the sheet and the associated stiffener.
Abstract:
A base plate for a disc drive incorporates a printed circuit board and connector assembly into an integral composite base that is bonded together to form a single composite structure. This structure provides the strength, stiffness and rigidity necessary to permit a reduction in overall thickness of a miniature disc drive to that substantially required for a Type I compact flash form factor data storage device.
Abstract:
In a film substrate (FB) including a film base material (1) and conductor wiring (23) that is formed on the film base material (1), the conductor wiring (23) is arranged such that the conductor wiring thickness of an external connection portion on the film substrate to which another panel or substrate is connected is thicker than the conductor wiring thickness of conductor wiring portions (bent portions) (25) at other positions.
Abstract:
A film carrier tape and a method of forming a film carrier tape that incorporates a polymeric reinforcement film are provided for decreasing the deformation of and damage to film carrier tapes by forces resulting from contact with sprocket teeth during the semiconductor assembly process. The reinforcement film may include one or more synthetic resins and may increase the useable area of a base film used in forming film carrier tapes.
Abstract:
A chip carrier film comprising a metal wiring formed on a surface of a base film, a first insulating film covering the metal wiring excluding a semiconductor chip connecting pad portion and a terminal connecting pad portion, a semiconductor chip connected to the semiconductor chip connecting pad portion of the metal wiring and mounted on the base film, and a second insulating film formed on a back face of the base film and having a different coefficient of curing shrinkage from that of the first insulating film. It is possible to obtain a chip carrier film capable of preventing the suspension of the base film from being generated by the self weight of the semiconductor chip when holding the base film by the delivery device and of carrying out mounting without a hindrance.
Abstract:
A multilayered substrate for a semiconductor device, which has a multilayered substrate body formed of a plurality sets of a conductor layer and an insulation layer, and having a face for mounting a semiconductor element thereon and another face for external connection terminals, the face for mounting a semiconductor device being provided with pads through which the substrate is connected to a semiconductor element to be mounted thereon, and the face for external connection terminals being provided with pads through which the substrate is connected to an external electrical circuit, wherein a reinforcing sheet is respectively joined to the face for mounting a semiconductor element thereon and the face for external connection terminals of the multilayered substrate body.
Abstract:
A printed circuit board (PCB) includes a plastic substrate, and a layout formed on the plastic substrate. The layout comprises a first layout and a second layout, the second layout is less dense than the first layout. The second layout comprises a pseudo-layout to prevent the PCB from being bent when heated.
Abstract:
Of an IC card, an IC is mounted on a surface of a circuit board (FPC) including a hard plate member that is attached on the other surface of the circuit board. Both surfaces of the circuit board having the IC and plate member are covered by a hard material member of electric insulating. Therefore, stress load applied to the IC can be restricted. Further, the circuit board along with the hard material member is divided into multiple portions that are connected using a flexible electric wiring. This can provide sufficient flexibility to the IC card, resulting in enhancement of a preventive effect in breakage or damage of the IC card.