Abstract:
Magnet placement is described for integrated circuit packages. In one example, a terminal is applied to a magnet. The magnet is then placed on a top layer of a substrate with solder between the terminal and the top layer, and the solder is reflowed to attach the magnet to the substrate.
Abstract:
A pressure sensor assembly includes a pressure sensor having a pressure sensing transducer connected to a plurality of electrode pins via a plurality of electrode pads disposed on the transducer, an inner casing configured to hold the pressure sensing transducer including a plurality of inner casing electrode pin channels having the electrode pins disposed therein. The pressure sensor further includes an outer casing holding the inner casing therein having a capsule header with a plurality of capsule header electrode pin channels defined therein which can include a ceramic seal disposed therein such that the capsule header electrode pin channels engage the electrode pins in an insulating sealed relationship. The outer casing further includes an isolator plate including an isolator plate fluid port defined therein and a pressure isolator disposed on the isolator plate and configured to deflect in response to a change in ambient pressure. The pressure sensor includes a pressure transmitting fluid disposed in the fluid volume.
Abstract:
A MEMS pressure sensor (70) includes a sense cell (80), a test cell (82), and a seal structure (84). The test cell includes a test cavity (104), and the seal structure (84) is in communication with the test cavity, wherein the seal structure is configured to be breached to change an initial cavity pressure (51) within the test cavity (104) to ambient pressure (26). Calibration methodology (180) entails obtaining (184) a test signal (186) from the test cell prior to breaching the seal structure, and obtaining (194) another test signal (196) after the seal structure is breached. The test signals are used to calculate a sensitivity (200) of the test cell, the calculated sensitivity is used to estimate the sensitivity (204) of the sense cell, and the estimated sensitivity (204) can be used to calibrate the sense cell.
Abstract:
A MEMS device includes a fixed electrode and a movable electrode arranged isolated and spaced from the fixed electrode by a distance. The movable electrode is suspended against the fixed electrode by one or more spacers including an insulating material, wherein the movable electrode is laterally affixed to the one or more spacers.
Abstract:
A micromechanical component is described having a substrate which has at least one stator electrode fixedly mounted with respect to the substrate, a movable mass having at least one actuator electrode fixedly mounted with respect to the movable mass, and at least one spring via which the movable mass is displaceable. The movable mass is structured from the substrate with the aid of at least one separating trench, at least one outer stator electrode spans at least one section of the at least one separating trench and/or of the movable mass, the at least one actuator electrode protrudes between the at least one outer stator electrode and the substrate, and at least one inner stator electrode protrudes between the at least one actuator electrode and the substrate. A related manufacturing method is also described for a micromechanical component.
Abstract:
A physical quantity measurement sensor includes: a ceramic package including a plate provided with a flow port through which a fluid to be measured flows; an electronic component including a sensing element housed in the package to detect the pressure of the fluid to be measured having flown through the flow port; a terminal provided on an exterior of the package; a lid attached to a wall of the package; and a metal attachment piece used to attach the package to the mount member, the attachment piece being engaged with the mount member while holding the package.
Abstract:
The present invention relates to a sensor that uses a sensing mechanism having a combined static charge and a field effect transistor, the sensor including: a substrate; source and drain units formed on the substrate and separated from each other; a channel unit interposed between the source and drain units; a membrane separated from the channel unit, disposed on a top portion and displaced in response to an external signal; and a static charge member formed on a bottom surface of the membrane separately from the channel unit and generating an electric field. Accordingly, since the sensor using a sensing mechanism having a combined static charge and a field effect transistor according to an embodiment of the present invention can measure the displacement or movement of the sensor by measuring a change of the electric field of the channel unit of the field effect transistor by using a static member, the electric field can be formed so as to be proportional to an amount of charge and inversely proportional to a squared distance regardless of the intensity and distribution of an external electric field. Therefore, sensitivity is improved without being affected by an external electric field.
Abstract:
A micro-electromechanical semiconductor component is provided with a semiconductor substrate, a reversibly deformable bending element made of semiconductor material, and at least one transistor that is sensitive to mechanical stresses. The transistor is designed as an integrated component in the bending element.
Abstract:
A microelectromechanical device includes: a substrate; a semiconductor die, bonded to the substrate and incorporating a microstructure; an adhesive film layer between the die and the substrate; and a protective layer between the die and the adhesive film layer. The protective layer has apertures, and the adhesive film layer adheres to the die through the apertures of the protective layer.
Abstract:
A capacitive pressure sensor includes: a semiconductor substrate having a reference pressure chamber formed therein; a diaphragm which is formed in a front surface of the semiconductor substrate and has a ring-like peripheral through hole penetrating between the front surface of the semiconductor substrate and the reference pressure chamber and defining an upper electrode and a plurality of central through holes; a peripheral insulating layer which fills the peripheral through hole and electrically isolates the upper electrode from other portions of the semiconductor substrate; and a central insulating layer which fills the central through holes.