Abstract:
Various embodiments include spectrometers comprising diffraction gratings monolithically integrated with other optical elements. These optical elements may include slits and mirrors. The mirrors and gratings may be curved. In one embodiment, the mirrors are concave and the grating is convex. The mirrors and grating may be concentric or nearly concentric.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Abstract:
A spectroscopic method and system for the spectral analysis of an optical signal directed to a wavelength dispersive component having two interleaved dispersive devices. For a single wavelength, the optical signal exiting the interleaved dispersive devices includes two wavefronts generally disposed at an angle to one another and producing an interference pattern. The interference pattern is detected and subsequently analyzed via a Fourier transform to produce the optical spectrum of the input beam. The method and system are applicable in a planar waveguide environment, in reflection and transmission geometries.
Abstract:
A method, element and system are provide for efficiently, accurately and without significant contribution of noise, splitting a beam of radiation or combining beams of radiation. In one embodiment of the invention, a beamsplitter front surface partially reflects incident radiation and refracts the rest of the radiation. The refracted radiation is completely reflected at a back surface of the beamsplitter and is completely refracted producing a parallel beam without creating any stray radiation or optical noise. This is accomplished using a p-polarized input beam and a Brewster angle geometry.
Abstract:
A miniaturized diffractive imaging spectrometer (DIS) has a footprint less than 2×1 mm2, is about 2.5 mm tall (excluding an image detector, which in some embodiments may be a CCD matrix), and covers the entire visible spectral range from 400 nm to 700 nm with resolution of approximately from 2 nm to 4 nm across the field. The DIS is able to function with multiple input waveguide channels, and is flexible in its various possible configurations, as it can be designed to achieve better resolution or higher number of channels or wider spectral range or smaller size.
Abstract:
A quasi-monochromatic light beam carrier for a particular telecommunication channel is likely to experience drift because of age, temperature, or other factors, and may cause the centroid wavelength of the carrier to shift. Temperature adjustments by wavelength lockers to compensate for drift on one channel may affect the performance of other channels. Embodiments of the present invention couple a quasi-monochromatic light beam through a substrate-based grating, diffract the light beam from the edge of the substrate to free space, and detect the light beam from free space at a position detector to determine the centroid wavelength based on a position of the light beam incident on the detector. The diffracted light beam may be reflected within the substrate a number of times prior to exiting the substrate towards the detector.
Abstract:
A spectroanalytical system for receiving radiation to be analyzed along a first path includes a grating in the first path with periodic faceted grooves for spatially separating the radiation as a function of wavelength. The blaze angles of the faceted grooves are progressively graded. A multielement detector detects radiation spatially separated by the grating. An optical conditioner is disposed in the first path between the grating and a multielement detector.
Abstract:
An optical analysis system (1), which is arranged to determine amplitude of a principal component of an optical signal, includes a first detector (5) for detecting the optical signal weighted by a first spectral weighting function, and a second detector (6) for detecting the optical signal weighted by a second spectral weighting function. For an improved signal-to-noise ratio, the optical analysis system (1) further includes a dispersive element (2) for spectrally dispersing the optical signal, and a distribution element (4) for receiving the spectrally dispersed optical signal and for distributing a first part of the optical signal weighted by the first spectral weighting function to the first detector (5) and a second part of the optical signal weighted by the second spectral weighting function to the second detector (6). The optical analysis system (1) is suited for use in numerous applications including a spectroscopic analysis system (30) and a blood analysis system (40).
Abstract:
A color measurement apparatus is adapted as an attachment for a personal computing system. An interface integral to the color measurement apparatus couples the color measurement apparatus to the personal computing system. A computer pointing device integral to the color measurement apparatus provides a pointer input for the personal computing system. A spectral sensing device integral to the color measurement apparatus measures light received via an input port in a plurality of spectral bands. A light source integral to the color measurement apparatus emits light external to the color measurement apparatus. The color measurement apparatus is operable in first, second and third modes of operation. In the first mode of operation, the computer pointing device provides pointer input of a user to the personal computing system. In the second mode of operation, the spectral sensing device measures light generated by a display of the personal computing system. In the third mode of operation, the light source provides light to a printed object printed by a printer coupled to the personal computing system and the spectral sensing device is adapted to receive and measure light that is returned from the printed object.
Abstract:
A fluorometer having extremely high spectral resolution and the capability of blocking exciting light. The fluorometer is inexpensive and rugged since it may comprise a device with no moving parts. The fluorometer comprises the following main components, a light input for receiving the fluorescing light, a collimating lens, a Fabry-Perot etalon, two dichroic mirrors, a Brewster angle wedge prism, and an output for reading the fluorescence.