Abstract:
A method and system for connecting a vertical printed circuit board with a horizontal printed circuit board where a contact device is biased in a first position when not contacting a vertical printed circuit board and is biased in a second position when the vertical printed circuit is coupled to the horizontal printed circuit board.
Abstract:
An electronic device includes a dielectric substrate having a first surface, a conductive circuit deposited on the first surface and having a printed conductive ink trace on the first surface, and a conductive interposer mechanically coupled to the substrate. The conductive interposer is electrically coupled to the conductive circuit. The conductive interposer has a separable contact interface configured to be mechanically and electrically connected to a removable contact. Optionally, the conductive interposer may include a main body and a flexible element extending between the main body and the conductive circuit. The flexible element electrically connects the conductive circuit with the main body.
Abstract:
Embodiments of the invention include flexible circuit board interconnections and methods regarding the same. In an embodiment, the invention includes a method of connecting a plurality of flexible circuit boards together comprising the steps applying a solder composition between an upper surface of a first flexible circuit board and a lower surface of a second flexible circuit board; holding the upper surface of the first flexible circuit board and the lower surface of the second flexible circuit board together; and reflowing the solder composition with a heat source to bond the first flexible circuit board and the second flexible circuit board together to form a flexible circuit board strip having a length longer than either of the first flexible circuit board or second flexible circuit board separately. In an embodiment the invention includes a circuit board clamp for holding flexible circuit boards together, the clamp including a u-shaped fastener; a spring tension arm connected to the u-shaped fastener; and an attachment mechanism connected to the spring tension arm. Other embodiments are also included herein.
Abstract:
A laminated electronic component includes a laminate including internal electrodes and dielectric layers laminated alternately and a first main surface, an external electrode that continuously covers at least one end surface of the laminate in a longitudinal direction and a portion of the first main surface adjacent to the one end surface, and a conductive elastic structure connected to the external electrode at at least corner portions of the first main surface in a portion where the external electrode covers the first main surface. The elastic structure includes a base portion connected to the external electrode to extend along the first main surface, and a branch portion branched from the base portion and extending at a position spaced from the first main surface to connect to another electrode, and having elasticity.
Abstract:
First and second tapered holes are provided at facing positions of the first and second circuit boards. The elastic spacer including first and second spacers is attached between them to couple the two in parallel and thereby facilitate attachment of the two to a back panel. The first spacer is provided at one end part with a tapered part which fits with the first tapered hole and the second spacer is provided at one end part with a tapered part which fits with the second tapered hole. A spring is inserted between the two spacers. The first spacer is fit in the tapered hole and fastened by a screw to the first circuit board. The second circuit board is fastened by a screw to the first spacer in a state fitting the second tapered hole over the second spacer with the second circuit board approaching the first circuit board.
Abstract:
A package structure comprises a substrate, a plurality of electronic components configured and structured on the substrate, a plurality of metal resilient units electrically connected to the substrate, and an encapsulation body encapsulating the plurality of electronic components and the plurality of resilient units together with the substrate. Part of each of the plurality of metal resilient units away from the substrate is exposed out of an exterior surface of the encapsulation body.
Abstract:
The invention relates to an assembly, comprising a substrate made of an electrically insulating material, an SMD component, which has lateral contact surfaces, and a lead frame part made of metal, which is fastened to the substrate and is used to establish electrical connections between the lateral contact surfaces of the SMD component and further functional elements of the assembly, wherein the lead frame part has contact tongues, which resiliently lie against the lateral contact surfaces and are connected to the lateral contact surfaces in a bonded manner.
Abstract:
A power semiconductor device includes a conductive insertion member as an external terminal projecting from a surface of the power semiconductor device facing a printed wiring board. The printed wiring board includes a conductive fitting member mounted on a pad part of the printed wiring board. The fitting member receives the insertion member therein when the power semiconductor device is connected to the printed wiring board. The insertion member has a recessed portion formed on a side surface of the insertion member. The fitting member has a projecting portion with elasticity formed on an inner side surface of the fitting member. The elasticity causes the projecting portion of the fitting member to contact the recessed portion of the insertion member under pressure when the insertion member is inserted into the fitting member.
Abstract:
An assembly of a plurality of tiles (1) with a carrier (40), wherein the tiles (1) comprise a foil (20) with an electro-physical transducer (10) and electrical connectors (24, 28) to said transducer. The tiles are mechanically and electrically coupled to the carrier, and the tiles overlay according to a fish scale pattern.
Abstract:
Non-rectangular or rectangular interposers for space efficient, reliable to manufacture, high speed interconnections between two printed circuit boards, such as a motherboard and a mating board. One example provides space efficiency with a non-rectangular interposer, where the interposer may be at least approximately circular. Reliable manufacturing may be provided by the inclusion of one or more openings to accept one or more alignment features. In one example, a first opening is provided to accept a threaded boss, which may be used to fasten the two printed circuit boards and interposer together. In another example, a second opening may be provided to accept an alignment post, wherein the post aligns the interposer to the two printed circuit boards. Contacts may be provided on each side to mate with contacts on each of the two printed circuit boards.