Abstract:
A flip chip interconnect of a die on a substrate is made by mating the interconnect bump onto a narrow interconnect pad on a lead or trace, rather than onto a capture pad. The width of the narrow interconnect pad is less than a base diameter of bumps on the die to be attached. Also, a flip chip package includes a die having solder bumps attached to interconnect pads in an active surface, and a substrate having narrow interconnect pads on electrically conductive traces in a die attach surface, in which the bumps are mated onto the narrow pads on the traces.
Abstract:
The width of a particular part (A) of a strip conductor 2 of a wiring circuit board for mounting is reduced, wherein the strip conductor is exposed to form a stripe pattern, so that individual conductor can be connected to electrode E of an electronic component. The particular part (A) is one section in the longitudinal direction of a strip conductor having a long end, which part includes an area overlapping an electrode which is connected to a short end and transferred in parallel in the strip width direction up to the position on the strip conductor having a long end. Due to this constitution, a structure capable of suppressing a short circuit between an electrode and a wiring pattern can be afforded to a wiring circuit board, even to an electronic component having an electrode formed in high-density and in a zigzag arrangement pattern, which comprises an area overlapping an electrode.
Abstract:
A data processing circuit has four signal conductors between a driver and a receiver, and first and second, mutually conducting shield planes. First and second signal conductors form a symmetrical stack in a column between the first and the second plane. Third and fourth signal conductors are arranged substantially midway between the first and the second plane, on mutually opposite sides of the stack. The first, second, third and fourth signal conductors have respective widths so that respective transmission line impedances of transmission lines between each particular one of the first, second, third and fourth conductors and the first and second planes are substantially mutually equal.
Abstract:
Structure and method for forming a switchable shunt for a suspension assembly having conductive, insulating and metal base layers. The shunt includes a bridge in the conductive layer with either a continuous connection or small gap between ends of the bridge. The continuous connection of the bridge is severed either by temporarily moving the lands out of their original plane by stretching and rupturing the bridge or by shearing the continuous connection of the bridge. For the sheared or gapped bridge, at least one end of the bridge is moved out of plane, compressed and elongated. When released, the separated ends of the bridge overlap and contact each other to form a normally-closed switch. To subsequently open the switchable shunt, at least one of the lands is moved out of plane to physically and electrically open the connection between the separated and overlapped ends of the bridge.
Abstract:
In a flexible wiring board for use in, for example, a liquid discharge head, wires disposed on a substrate in parallel are covered with a film material. The flexible wiring board is bendable towards one of a front surface side and a back surface side of the substrate and includes a bending line. The bending line is formed by bending the flexible wiring board along a bending direction crossing a longitudinal direction of the wires. The bending line contains the wires. Both ends of the flexible wiring board in the bending direction are located on the bending line. A distance between one of the wires located closest to one end of the flexible wiring board and the one end is larger on the bending line than in another part of the flexible wiring board. Accordingly, even if the flexible wiring board is bent at a small bend radius, peeling does not easily occur between a base film and a cover film.
Abstract:
A mounting structure includes a first substrate that has a first surface and a second surface, a plurality of first connection terminals that are disposed on the first surface in a first direction, a plurality of second connection terminals that are disposed on the first surface in a second direction perpendicular to the first direction and that are disposed at predetermined gaps from the first connection terminals, a plurality of connection wiring lines that are disposed on the second surface, each having first portions that overlap the first and second connection terminals in plan view and a second portion that is formed to have a width narrower than those of the first and second connection terminals in the first direction, a plurality of through holes that pass through the first substrate so as to correspondingly connect the second connection terminals to the connection wiring lines, and a second substrate that has a plurality of third connection terminals correspondingly connected to the first and second connection terminals and correspondingly overlap the first and second connection terminals in plan view.
Abstract:
According to this invention, a wiring board includes a conductive pattern formed from leads each of which is formed on an organic layer and has a thickness t larger than a width W.
Abstract:
A signal transmission structure includes at least one reference plane with a non-reference area, and a signal line with a salient protruding over the edge of the signal line and the salient is corresponding to the position of the non-reference area. When a signal passes through the signal line, the effect of the parasitic capacitance between the salient and the reference plane can improve the characteristic impedance mismatch. Therefore, the signal transmission structure can reduce the insertion loss and increase the reduction of the return loss in order to locally compensate the impedance mismatch.
Abstract:
A module board has trace impedances that are matched at trace junctions. An input line that drives a signal to a junction has its impedance adjusted to match the equivalent impedance of branch traces output from the junction. Since input and output impedances match, reflections caused by the junction are minimized or eliminated. The input impedance can match by being within 20% of the equivalent impedance of the branch lines. The equivalent impedance of branches is the reciprocal of the sum of the individual branch lines' reciprocal impedance. Termination can be eliminated when such junctions are impedance-matched. Secondary junctions can also be impedance-matched, allowing for a variety of trace topologies. Such trace-impedance matching is especially useful for memory modules.
Abstract:
A filet F is added to a portion constituting a corner portion C equal to or smaller than 90° in a crossing portion X of wiring patterns 58b, 58c and 58d, and a wiring pattern 58 is formed. Since the filet F is added, the wiring patterns are not made thin and are not disconnected in the crossing portion X. Further, since there is no stress concentrated to the crossing portion X, disconnection is not caused in the wiring patterns and no air bubbles are left between the crossing portion X of the wiring patterns and an interlayer resin insulating layer so that reliability of a printed wiring board is improved.