Abstract:
A substrate is provided that includes a plurality of substrate layers and a plural diameter via having a first via portion and a second via portion. The first via portion is formed in a first substrate layer, has a first diameter, and extends along a first axis. The second via portion is formed in a second substrate layer, has a second diameter that is different than the first diameter of the first via portion, and extends along a second axis that is offset from the first axis of the first via portion. Optionally, the first via portion and the second via portion may have a common edge that is spaced the same distance from an edge of another via extending through the substrate.
Abstract:
A surface mount electrical interconnect adapted to provide an interface between solder balls on a BGA device and a PCB. The electrical interconnect includes a socket substrate with a first surface, a second surface, and a plurality of openings sized and configured to receive the solder balls on the BGA device. A plurality of electrically conductive contact tabs are bonded to the first surface of the socket substrate so that contact tips on the contact tabs extend into the openings. The contact tips electrically couple with the BGA device when the solder balls are positioned in the openings. Vias are located in the openings that electrically couple the contact tabs to contact pads located proximate the second surface of the socket substrate. Solder balls are bonded to the contact pad that are adapted to electrically and mechanically couple the electrical interconnect to the PCB.
Abstract:
A molding pin for a metal die is prevented from breaking, solder is surely deposited, and thus, a circuit pitch can be reduced to the limit. On the front plane of a circuit board, prescribed circuit patterns made of a conductive material are formed, and on the rear plane, prescribed circuit patterns are also formed. On the circuit board, a through hole is formed to carry electricity between the circuit patterns on both planes. The inner shape of the through hole is narrow in a direction between the adjacent circuit patterns and wide in a circuit extending direction.
Abstract:
The present invention relates to a method for manufacturing large lighting which uses a power LED, such as for large LED lighting for street lamps, which incorporates a heat dissipation device that has the ability to dissipate heat with natural convection to maintain ambient temperature. The disclosed method is novel applied technology for producing a large LED lighting, such as for street lamps, which has a power LED device with a unique, rear heat dissipation capability. In addition to maximum thermal efficiency by heat dissipation, the present LED lighting system also increases luminous efficiency by providing high light emission with only a small quantity of LED power.
Abstract:
A method of embedding a magnetic component in a substrate is disclosed. Holes are formed in a substrate by mechanically drilling. Each of the holes includes a top opening, a bottom and sidewall, wherein an area of the top opening is larger than that of the bottom. The sidewall extends from the top opening vertically downwards to a predetermined depth, and then is slanted inwardly to the bottom to form a sloped sidewall at the bottom of the hole. A predetermined region is defined along a portion of an edge of the top opening, and a portion of the substrate material under the predetermined region is removed by routing to form a component accommodation trench with a portion of the sloped sidewall at the bottom. Then, a magnetic component is placed into the component accommodation trench.
Abstract:
There is provided that a substrate comprising a glass substrate 2 constituted by a glass including a silicon oxide. The glass substrate has a through-hole 3 communicating with a front surface and a rear surface of the glass substrate, and filled with a metal material. The substrate is realized by forming an anchor part by selectively etching a silicon oxide on a sidewall surrounding an inside of said through-hole 3 before filling the metal material and by filling the inside of said through-hole 3 with the metal material after forming the anchor part.
Abstract:
A wiring substrate includes a body including first and second surfaces, a trench having an opening on the first surface and including, a bottom surface, a side surface, and a slope surface that connects a peripheral part of the bottom surface to a one end part of the side surface and widens from the peripheral part to the one end part, the one end part being an end part opposite from the first surface, a hole including an end communicating with the bottom surface and another end being open on the second surface, a first layer filling at least a portion of the hole and including a top surface toward the trench, a second layer covering the top surface and formed on at least a portion of the trench except for a part of the side surface, and a third layer covering the second layer and filling the trench.
Abstract:
According to one embodiment of the invention, a circuit board comprises a conductive layer including a land portion and a line portion connected to the land portion, and; a conductor connected to a surface of the land portion. A planar shape of the connected portion between the conductor and the land portion has a elongated shape along a width direction of the line portion. A part of the connected portion is located within an imaginary region formed by imaginarily extending the line portion toward the land portion.
Abstract:
A method for manufacturing a printed wiring board including forming a penetrating hole in a core substrate, forming a first conductor on a first surface of the substrate, forming a second conductor on a second surface of the substrate, and filling a conductive material in the hole such that a through-hole conductor is formed in the hole and the first and second conductors are connected via the through-hole conductor. The forming of the hole includes forming a first opening in the first surface, forming a second opening from the bottom of the first opening toward the second surface such that the second opening has a smaller diameter than the first opening, forming a third opening in the second surface, and forming a fourth opening from the bottom of the third opening toward the first surface such that the fourth opening has a smaller diameter than the third opening.
Abstract:
A printed wiring board including a core substrate having a metal layer, a first resin insulation layer on a surface of the metal layer and a second resin insulation layer on the opposite surface of the metal layer, a first conductive circuit formed on the first layer, a second conductive circuit formed on the second layer, and a through-hole conductor formed in a penetrating hole through the substrate and connecting the first and second circuits. The metal layer has an opening filled with a filler resin, the penetrating hole has a first opening in the first layer, a second opening in the second layer and a third opening in the filler resin, the first opening tapers toward the filler resin, the second opening tapers toward the filler resin, and the third opening is connecting the first and second openings.