Abstract:
A method and fluorimeter for flashing a target at several different levels for detection of fluorescence by a PMT without blinding the PMT at the highest level. Two lamps are provided each of which is powered to flash at two different levels that are staged in energy from the lowest of four to the highest of four levels, and a shutter is provided to close off the PMT from exposure when an acceptable, detectable level of fluorescence is detected by the PMT.
Abstract:
A device for measuring the mass of solids contained in a fluid with light. The device includes at least two pairs of light transmitters arranged crosswise. The light transmitters in each pair are able to, at the same time, transmit pulses of light with a certain wavelength, where the wavelengths of the pairs of transmitters are different from each other. The device further includes at least one detector that is able to detect light pulses reflected from the solids as a result of the transmitted light pulses. The detected light pulses are processed to obtain a measurement of the mass of the solids contained in the fluid.
Abstract:
A device for detecting at least one gas with an absorption band in the infrared range. The device includes a cell containing a gas mixture to be tested, an infrared radiation source, a power supply circuit for the source, an infrared radiation sensor and a signal processing line connected to the output of the sensor. The cell is compact and the radiation source and the radiation sensor are held in direct contact with the gas mixture therein.
Abstract:
A pathlength corrected spectrophotometer for tissue examination includes an oscillator for generating a carrier waveform of a selected frequency, an LED light source for generating light of a selected wavelength that is intensity modulated at the selected frequency introduced to a subject, and a photodiode detector for detecting light that has migrated in the tissue of the subject. The spectrophotometer also includes a phase detector for measuring a phase shift between the introduced and detected light, a magnitude detector for determination of light attenuation in the examined tissue, and a processor adapted to calculate the photon migration pathlength and determine a physiological property of the examined tissue based on the pathlength and on the attenuation data.
Abstract:
The fire detector includes a carbon dioxide sensor and a microcomputer. When the rate of increase of the concentration of carbon dioxide at the sensor exceeds a threshold, an alarm is produced. The threshold is set at one of three possible levels by the microcomputer in response to the state of the atmosphere at the sensor as determined by the microcomputer based on several variables that are derived from the sensed concentration of carbon dioxide. The derived variables include the average concentration of carbon dioxide, the average rate of change of carbon dioxide concentration, the monotonicity of the increase or decrease of the carbon dioxide concentration and the range of concentrations sensed in each cycle of operation. The threshold setting is determined every ten seconds. In this way, the setting of the rate threshold is responsive to variations in the carbon dioxide level at the sensor that are caused by entities other than a fire, such as the presence or absence of people in a closed room.
Abstract:
A method and system for examination of a subject positioned between input and detection ports of the spectroscopic system applied to the subject. The systems shown include at least one light source for introducing at one or multiple input ports, electromagnetic non-ionizing radiation of a known time-varying pattern of photon density of a wavelength selected to be scattered and absorbed while migrating in the subject, radiation pattern control means for achieving a directional pattern of emitted resulting radiation that possesses substantial gradient of photon density, at least one detector for detecting the radiation that has migrated in the subject at one or multiple detection ports. The systems also include processing means for processing the detected radiation and creating sets of data, and evaluation means for examining the subject using the data sets. The emitted directional radiation pattern utilizes its gradient of photon density to detect a hidden object while scanning across the examined subject. The wavelength of the radiation can be selected to be sensitive to endogenous or exogenous pigments, or to cause fluorescent emission from a fluorescent constituent of interest in the subject. The operation of the systems is computer controlled.
Abstract:
A diffusion-type gas sample chamber for use in a gas analyzer consists of an elongated hollow tube having an inwardly-facing specularly-reflective surface that permits the tube to function also as a light pipe for transmitting radiation from a source to a detector through the sample gas. A number of filtering apertures in the wall of the otherwise non-porous hollow tube permit the sample gas to enter and exit freely under ambient pressure. Particles of smoke and dust of a size greater than 0.1 micron are kept out of the chamber by use of a semi-permeable membrane that spans the apertures in the hollow tube. Condensation of the sample gas components is prevented by heating the sample chamber electrically to a temperature above the dew point of the component of concern.
Abstract:
An apparatus for color control of objects (11) has an approximately point-shaped light source in the form of a xenon flash lamp (16), which illuminates a specific, desired area through a diaphragm (17). Light reflected from the object is received by a detector unit (13) having three or more sensors (22) with their respective spectral sensitivities, which are positioned at such a great distance from the object that each receives substantially the same amount of light from all parts of the illuminated area. The detector signals are amplified by amplifiers adapted to filter all signals exhibiting another timewise variation than the light source, so that disturbing influence from the surroundings is avoided. The apparatus is simple and fast and is versatile in use.
Abstract:
A monobeam system for determining concentration changes of chromophore substance in a sample includes a flash lamp for passing a light beam through a sample containing the analyte. The values of absorbance by the sample at multiple wavelengths are measured and the optimum linear combination of absorbance values is determined to obtain a measure of chromophore concentration. Extinction coefficients for a chromophore is measured employing Deming's method and eigenvector transformations. A matrix reflecting the noise pattern of the system is determined. This matrix and the extinction coefficients are used in determining the coefficients for the optimum linear combination. An electronic module converts analog intensity data into digital data for five wavelengths. This is processed into absorbance values and concentration determinations.
Abstract:
A method and apparatus for rapid analysis of a sample medium, particularly a flowing sample medium employ light of a defined wavelength which is guided onto a luminescent layer in contact with the sample medium, the luminescent properties of the layer varying in dependence upon characteristics of the sample medium which are to be analyzed. The luminescent light is monitored by detectors, the detector signals being a measure for the characteristic of interest. For undertaking identification of a particular characteristic with very short follow-up time, even in the presence of a number of other characteristics which influence the luminescent properties, the luminescent intensity is identified for a number of different wavelength regions corresponding in number to the number of characteristics, each characteristic differently influencing the luminescent properties in at least one wavelength region. The signals thus obtained are supplied to a processing device for identifying the value of the characteristic of interest.