Abstract:
An electronic device comprising a semiconductor chip which is fixed to the mounting face of a wiring board through an adhesive and in which external terminals are electrically connected with electrode pads of the wiring board through bump electrodes. Recesses are formed in the electrode pads, and in the recesses the electrode pads and the bump electrodes are connected. The electrode pads are formed over the surface of a soft layer, and the recesses are formed by elastic deformation of the electrode pads and the soft layer.
Abstract:
A socket device for receiving a connection pin is disclosed, the socket device including a substrate having an upper surface. The socket device includes a connection pad disposed on the upper surface and a first layer disposed on the upper surface and on the connection pad. The first layer includes material having an overall positive coefficient of thermal expansion. The socket device includes a second layer disposed on the first layer. The second layer includes material having an overall negative coefficient of thermal expansion. The socket device also includes a contact hole formed in the first and second layers exposing a portion of the connection pad.
Abstract:
A wiring substrate used for a resin-sealing type semiconductor device is provided with an insulating substrate in which a through hole used for connecting an external terminal is formed, a wiring pattern formed on a semiconductor-chip packaging surface side of the insulating substrate, a land section that is formed at an end of the wiring pattern in a manner so as to cover the through hole from the semiconductor-chip packaging surface side, and that is used for connecting the external connecting terminal to the wiring pattern from the surface side opposite to the above-mentioned semiconductor-chip packaging surface side of the insulating substrate, and a through-hole opening section that allows the through hole to be partially open on the semiconductor-chip packaging surface side. This arrangement makes it possible to prevent problems of separation and swelling of resin caused by bubbles and moisture expanded by heat, which reside in the interface between the wiring substrate used for the resin-sealing type semiconductor device and the semiconductor chip packaged on the wiring substrate used for the resin-sealing type semiconductor device.
Abstract:
To present a method and apparatus for forming favorable solder bumps on a substrate of electronic component or the like, in which metal paste is applied on the lower surface of solder balls attracted by a suction tool, and the solder balls are positioned to contact with recesses having the electrode in the bottom, so that the metal paste adhered to the solder balls is adhered to the top of the recesses. Next, the solder balls are moved reciprocally in the vertical direction or horizontal direction. As a result, the metal paste adhered to the top of the recesses is collected to fill up the recesses. Then, the solder balls are put on the top of the recesses, and heated and fused, and solder bumps are formed.
Abstract:
A socket device for receiving a connection pin is disclosed, the socket device including a substrate having an upper surface. The socket device includes a connection pad disposed on the upper surface and a first layer disposed on the upper surface and on the connection pad. The first layer includes material having an overall positive coefficient of thermal expansion. The socket device includes a second layer disposed on the first layer. The second layer includes material having an overall negative coefficient of thermal expansion. The socket device also includes a contact hole formed in the first and second layers exposing a portion of the connection pad.
Abstract:
A method for vertically interconnecting stacks of silicon segments. Each segment includes a plurality of adjacent die on a semiconductor wafer. The plurality of die on a segment are interconnected on the segment using one or more layers of metal interconnects which extend to all four sides of the segment to provide edge bonding pads for external electrical connection points. After the die are interconnected, each segment is cut from the backside of the wafer using a bevel cut to provide four inwardly sloping edge walls on each of the segments. After the segments are cut from the wafer, the segments are placed on top of one another to form a stack. Vertically adjacent segments in the stack are electrically interconnected by applying electrically conductive epoxy to one or more sides of the stack. The inwardly sloping edge walls of each of the segments in the stack provide a recess which allows the electrically conductive epoxy to access the edge bonding pads and lateral circuits on each of the segments once the segments are stacked. A dielectric coating is applied to the die to provide a conformal coating to protect and insulate the die and a laser is used to ablate the area over the bond pads to remove the dielectric coating in order to provide for electrical connections to the bond pads.
Abstract:
A structure for mounting a wiring board in which the wiring board including a ceramics insulating board, metallized wiring layers arranged on said insulating board, and a plurality of connection terminals mounted on said insulating board and electrically connected to said metallized wiring layer, is placed on a mother board having wiring conductors formed on the surface of an insulator which contains an organic resin, and the connection terminals of said wiring board are connected by brazing to the wiring conductors of said mother board, wherein a value F1 defined by the following formula (1):F1=L.times..DELTA..alpha./H.sup.2 (1)wherein L is a distance (mm) between the two connection terminals which are most separated away from each other among a plurality of connection terminals mounted on said insulating board, .DELTA..alpha. is a difference in the coefficient of thermal expansion (ppm/.degree. C.) between the insulating board of said wiring board and said mother board at 40 to 400.degree. C., and H is a height (mm) of brazing between said wiring board and said mother board.is not larger than 2000. This structure effectively loosens a difference in the thermal expansion between the wiring board and the mother board, and maintains favorable electric connection between the two for extended periods of time.
Abstract:
An adhesion pad for adhering a semiconductor chip or a ball grid array module to a supporting substrate includes a stepped or tapered structure. The structure is composed of at least one solder wettable metal or alloy layer having solder deposited thereon. The stepped or tapered structure prevents a fatigue crack from propagating in the X-Y plane above the adhesion pad.
Abstract:
An electrical circuit assembly which requires no solder processing, including an electronic component having terminations arranged on at least one of its surfaces, and a molded curviplanar substrate having circuit traces thereon and a cavity formed therein, wherein the cavity substantially conforms in shape with the electronic component. Proximate the cavity is a plurality of electrical contacts, arranged in matched relation with the respective terminations of the electronic component, with at least one of the electrical contacts being connected to at least one of the circuit traces on the substrate. The cavity and electrical contacts are dimensioned such that an interference fit is provided between the component's terminations and the electrical contacts, such that the component is held within the cavity when the component is placed therein. The component is disposed in the cavity such that its terminations are in physical and electrical connection with their respective electrical contacts.
Abstract:
A wiring pattern is selectively formed on a base member by permanent resist. Furthermore, the thickness of a non-electrolytic copper plating layer is made thinner than that of a permanent resist layer on the base member, so that a concave shape is formed in combination with the permanent resist layer. A solder resist layer is formed on the non-electrolytic copper plating layer and the permanent resist layer except for a pad portion formed by the non-electrolytic copper plating layer, and a peripheral portion of the pad portion is surrounded by a wall formed by the permanent resist layer and the solder resist layer. Solder is supplied onto the pad portion surrounded by the wall by way of either the MICROPRESS method or the MICROBALL method.