Abstract:
A light-emitting device and an electronic device using the same are provided. The light-emitting device includes a light-guiding plate, a circuit board, at lease one light source unit and a reflective layer. The circuit board is disposed under the light-guiding plate. The reflective layer is disposed above the light-guiding plate. The light-guiding plate has at lease one hole. The light source unit is disposed on the circuit board and within the hole. The reflective layer is disposed above the hole. The light-emitting device is disposed on one side of a part, such as a keypad, of the electronic device for providing light to the keypad.
Abstract:
An electronic device is provided that includes a main printed circuit board (PCB) having a top surface, a bottom surface, and a hole extending between the top surface and the bottom surface. The electronic device further includes a module PCB having at least one electrical component mounted on a top surface of the module PCB, wherein the module PCB is inverted and assembled adjacent the main PCB such that the top surface of the module PCB faces the top surface of the main PCB, and the at least one electrical component extends into the hole. In addition, the electronic device includes a cover on the bottom surface of the main PCB that substantially covers the hole.
Abstract:
A module includes a board having a through-hole provided therein, an auxiliary board provided on a lower surface of the board, a first electronic component mounted on an upper surface of the board, a conductive cover covering the first electronic component, and a second electronic component mounted on an upper surface of the auxiliary board. The auxiliary board includes a sealing portion sealing the through-hole. The second electronic component is positioned in the through-hole provided in the board and on the upper surface of the auxiliary board. The second electronic component is taller than the first electronic component. This module is thin.
Abstract:
A circuit board module and a forming method thereof are provided. The circuit board module includes a first circuit board, a second circuit board and a conductive structure. The first circuit board has a first surface, a second surface and an opening. The opening passes through the first surface and the second surface. The first surface has a first solder pad. The second circuit board has a second solder pad. Part of the second circuit board passes through the opening from the first surface to the second surface, so that part of the second solder pad is exposed on the first surface. The conductive structure is electrically connected to the first solder pad and the second solder pad, so that the first circuit board is electrically connected to the second circuit board.
Abstract:
An object of the invention is to provide a flexible copper clad laminate and the like in use of electro-deposited copper foil having lower profile and higher mechanical strength compared with conventional low profile electro-deposited copper foil having been supplied in the market. For attaining the object, a flexible copper clad laminate manufactured by laminating the electro-deposited copper foil to resin film, which is characterized in that a deposition surface of the electro-deposited copper foil comprises a low profile glossy surface having surface roughness (Rzjis) of not more than 1.5 μm and brightness (Gs (60°)) of not less than 400 and the deposition surface and the resin film are bonded together is adopted. And, using the flexible copper clad laminate, it may ease manufacture of a flexible printed wiring board as a film carrier tape, such as a COF tape and the like, wherein the formed wiring has a fine pitch wiring with pitch being not more than 35 μm.
Abstract:
A multilayered printed circuit board or a substrate for mounting a semiconductor device includes a semiconductor device, a first resin insulating layer accommodating the semiconductor device, a second resin insulating layer provided on the first resin insulating layer, a conductor circuit provided on the second resin insulating layer, and via holes for electrically connecting the semiconductor device to the conductor circuit, wherein the semiconductor device is accommodated in a recess provided in the first resin insulating layer, and a metal layer for placing the semiconductor device is provided on the bottom face of the recess. A multilayered printed circuit board in which the installed semiconductor device establishes electrical connection through the via holes is provided.
Abstract:
For electrically connecting a wiring formed on one surface of an insulating substrate such as an FPC to an individual electrode arranged facing the other surface of the substrate, firstly, a through hole and a notch are formed by irradiating a laser beam from above onto the FPC. Next, the FPC is arranged to be positioned such that the individual electrode, the through hole and the notch are overlapped in a plan view. Next, an electroconductive liquid droplet having a diameter greater than a width of the notch is jetted, toward an area formed with the notch, from the one surface side of the FPC. The landed electroconductive liquid droplet flows along the notch in a thickness direction of the substrate due to an action of a capillary force and reaches assuredly to the individual electrode, thereby electrically connecting the wiring and electrode arranged sandwiching the insulating substrate assuredly.
Abstract:
A semiconductor package module having no solder balls and a method of manufacturing the semiconductor package module are provided. The semiconductor package module includes a module board on which a plurality of semiconductor devices are able to be mounted, a semiconductor package bonded on the module board using an adhesive, being wire-bondable to the module board, and having already undergone an electrical final test, second wires electrically connecting second bond pads of the semiconductor package to bond pads of the module board; and a third sealing resin enclosing the second wires and the semiconductor package. Because the semiconductor package module does not use solder balls, degradation of solder joint reliability (SJR) can be prevented. Further, the use of a semiconductor package that has already undergone an electrical test can reduce degradation of the yield of a completed semiconductor package module.
Abstract:
According to some embodiments, a cooling device may comprise first and second contact surfaces to transfer heat to a cooling medium. The cooling device may further comprise, in some embodiments, a first electrical component coupled to transmit heat to the first contact surface and a second electrical component coupled to transmit heat to the second contact surface.
Abstract:
A mask (stencil) having cells (openings) is disposed on a surface of a heater stage, and is then filled (printed) with solder paste. Then a substrate is assembled to the opposite side of the mask. Then the solder paste is reflowed. This may be done partially inverted. Then the mask is separated from the substrate, either before or after cooling. Solder balls are thus formed on the substrate, which may be a semiconductor wafer. A biased chuck urges the substrate into intimate contact with the mask. A method for printing the mask with solder paste is described. Methods of forming high aspect ratio solder bumps (including balls and reflowable interconnect structures) are described.