Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed. Spectrometers and spectrophotometers embedded in printing and scanning and other type devices, as well as computer companion devices, scope-type devices and the like, also are disclosed. Data encoding based on such devices also may be implemented.
Abstract:
A portable color measuring device is provided that includes a hand-holdable housing. The color measuring device is configured to receive an independently operable processing device that is mounted to the housing. The independently operable processing device is a portable general purpose computer that executes software applications to control the operation of the color measuring device and process color data. The color measuring device measures the color properties of a sample by illuminating the sample with a light source. The measured properties are processed and/or analyzed by the independently operable processing device and results are displayed to a user. Software applications reside on the independently operable processing device allowing software upgrades or modifications to be easily performed. New applications can be downloaded to the processing device or the processing device can be interchanged with a different processing device.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe With respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
A calibration apparatus for calibrating a color imager, the calibration apparatus comprising an integrating sphere having at least one port, at least one light emitting diode, and an optical baffle so that light provided by the at least one light emitting diode is reflected upon the inner surface of the integrating sphere before exiting the at least one port.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.
Abstract:
A portable spectrophotometer includes a rotating wheel provided with a plurality of filters having filter characteristics in the 400 to 700 nanometer wavelength range. The filters are moved between an optical conduit and a photoelectric sensor as the wheel is rotated. In one embodiment, a lamp housing contains three object illuminating lamps circumferentially spaced apart by 120.degree. and projecting light onto the object sample at a 45.degree. angle to the object sample. Light reflected from the object sample is conducted through the optical conduit and focused on the optical sensor by means of a focusing lens. A blocking filter is interposed between the lens and the wheel and serves to block light outside of the 400 to 700 nanometer wavelength range. A side sensor receives light from one of the three lamps through the filters as the wheel is rotated and provides output signals which are used as reference signals for the individual filters. In another embodiment, the spectrophotometer includes an integrating sphere with an aperture for conducting specular-included light reflected from the object and an aperture for conducting specular-excluded light from the object. The integrating sphere spectrophotometer also includes a rotatable filter wheel, with a plurality of filters having filter characteristics in the 400 to 700 nanometers wave length range. A side sensor is also provided with the integrating sphere spectrophotometer. As the wheel is rotated, specular-included and specular-excluded light from an object sample to be tested is projected simultaneously through apertures of the sphere. Light detected by a side sensor is also simultaneously detected through one of the filters of the filter wheel. The integrating sphere spectrophotometer also includes an arrangement for providing calibration and compensation of reflectance measurements.
Abstract:
A hand-manipulatable device includes a sensor for gathering reflective, densitometric, spectrophotometric, colorimetric, self-luminous or radiometric readings from a sample surface. The device includes a housing having a substantially flat bottom surface and a top surface contoured to fit comfortably in the fingers and palm of the human hand. The housing also includes area on its top surface for seating an index finger of the human hand. Positioned within this area is a pressure-activated switch that is operatively coupled to the sensor circuitry for performing the readings. Preferably, the sensor is mounted into the device such that the focal aperture of the sensor is in axial alignment with the pressure-activated switch. Accordingly, a user will be able to use the device to "point" with his or her index finger to an area of the sample surface, and will then simply press the switch to initiate the readings, using the same index finger.
Abstract:
A portable spectrophotometer includes a small-diameter optical sphere as well as optical detectors and signal processing and display circuitry which allows the instrument to be taken to an object to be measured and which provides a readout of color values at the portable instrument. The instrument is capable of providing specular-included and specular-excluded color readings simultaneously. The interior of the integrating sphere is coated with a highly reflective, color-absorbing material, and light from an incandescent lamp is diffused within the sphere prior to reaching the object to be measured. The sphere is provided with a first aperture which receives spectrally-included light and which is positioned to absorb a spectral component of the diffused source light. A second aperture positioned at a corresponding angular position with respect to the object measures specular-excluded light, excluding the specular component absorbed by the first aperture. Light detected from the first aperture is analyzed at a plurality of wavelengths obtained by the use of interference filters, and the light obtained from the second aperture is analyzed at one of the plurality of wavelengths. By appropriately combining the specular-included and specular-excluded at one wavelength, a value for the specular component is derived. Since this value is a theoretical constant, it is used to derive a specular-excluded reading from each of the specular-included readings at the different wavelengths.