Abstract:
Systems for applying pigment to a substrate has a spectrophotometer integral to the system and supplies light to the substrate and receives light from the substrate. One or more pigment dischargers integral to the system apply one or more pigments to the substrate. A spectrometer spectrally analyzes the one or more pigments applied to the substrate. The spectrometer includes an optical sensing circuit having plurality of optical sensors and one or more processing elements and a plurality of filter elements fixedly positioned with respect to at least a first group of the optical sensors. An optical implement is fixedly positioned with respect to the plurality of filter elements and has a plurality of outputs and at least one entrance. The spectrometer is fabricated in a unitary manner.
Abstract:
A handheld LIBS spectrometer includes an optics stage movably mounted to a housing and including a laser focusing lens and a detection lens. One or more motors advance and retract the optics stage, move the optics stage left and right, and/or move the optics stage up and down. A laser source in the housing is oriented to direct a laser beam to the laser focusing lens. A spectrometer subsystem in the housing is configured to receive electromagnetic radiation from the detection lens and to provide an output. A controller subsystem is responsive to the output of the spectrometer subsystem and is configured to control the laser source and motors. In this way, auto-calibration, auto-clean, and auto-focus, and/or moving spot functionality is possible.
Abstract:
A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.
Abstract:
A method and apparatus are provided that interrogate, receive, and analyze full emission spectra for at least one fluorescence excitation wavelength and for at least one reflectance measurement to determine tissue characteristics and correlate same to photographic images. Further, the system and method accomplish this measurement rapidly by increasing the light throughput by integrating optics into a hand held unit and avoiding the need for a coherent fiber optic bundle being used. The method includes illuminating a first portion of a target tissue with optical energy, forming a first image of the target tissue, illuminating a second portion of the target tissue with optical energy, performing spectroscopic measurements on optical energy reflected and/or emitted by the target tissue upon illumination of the second portion of the target tissue with optical energy, and determining tissue characteristics of the target tissue based on the results of the spectroscopic measurements.
Abstract:
A variable wavelength diode according to the inventive concept includes a resonator and a plurality of cylindrical lenses. The resonator includes slab waveguides of which resonance lengths are different from each other. The slab waveguides are disposed on a planar light wave circuit (PLC). Thus, the variable wavelength diode realizes a high variation speed and a continuous variation of a beam at the same time.
Abstract:
Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter “badges” to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.
Abstract:
The present invention relates to methods, apparatus, and imaging systems for using near-infrared spectroscopy imaging of plant embryos for classifying plant embryos. In one embodiment, a method is provided for classifying a plant embryo of an unknown type based on near infrared spectroscopy imaging.
Abstract:
The invention relates to an optical assembly (1) comprising a pulsed light source (2) for generating primary light pulses (4), a pulse splitter (5) for splitting said primary light pulses (4) into first and second secondary light pulses (7), and a delay element (8) for delaying said second secondary light pulses (7) relative to said first secondary light pulses (6), where the pulse repetition rate of said pulsed light source (2) is variable in order to change a temporal delay between different secondary light pulses (6,7) The invention is characterized in that said optical assembly (1) comprises a thermal insulation (12), a temperature stabilizer (16) or a temperature compensator (13) for said delay element (8) and/or a control circuit (27) for determining and controlling a drift of said pulse repetition rate.
Abstract:
A multi-channel detector assembly for downhole spectroscopy has a reference detector unit optically coupled to a reference channel of a source and has a measurement detector unit optically coupled to a measurement channel of the source. The reference and measurement detectors detect spectral signals across a spectral range of wavelengths from the reference and measurement channels. Conversion circuitry converts the detected spectral signals into reference signals and measurement signals, and control circuitry processes the reference and measurements signals based on a form of encoding used by the source. Then, the control circuitry can control the output of spectral signals from the source based on the processed signals or scale the measurement signal to correct for source fluctuations or changes in environmental conditions.
Abstract:
An apparatus and method for noninvasive determination of analyte properties of human tissue by quantitative infrared spectroscopy to clinically relevant levels of precision and accuracy. The system includes subsystems optimized to contend with the complexities of the tissue spectrum, high signal-to-noise ratio and photometric accuracy requirements, tissue sampling errors, calibration maintenance problems, and calibration transfer problems. The subsystems can include an illumination/modulation subsystem, a tissue sampling subsystem, a data acquisition subsystem, a computing subsystem, and a calibration subsystem. The invention can provide analyte property determination and identity determination or verification from the same spectroscopic information, making unauthorized use or misleading results less likely than in systems that use separate analyte and identity determinations. The invention can be used to control and monitor individuals accessing controlled environments.