Abstract:
Methods and systems are provided for determining a hair color treatment option. The methods and systems include calibrating a camera of the mobile device via a calibration card by determining calibration values from a calibration image captured by the camera, obtaining, with the camera, a first image of a user's hair, obtaining, with the camera, a second image of a target color, the target color representing a color to which the user desires to change at least a portion of the hair, and presenting, via a user interface (UI) of the mobile device, a recommendation, the recommendation providing at least one hair color treatment option to change at least the portion of the user's hair to the target color.
Abstract:
A color measuring device includes a color difference meter module. The color difference meter module includes: a main detecting unit having an optical detecting unit configured to receive light introduced from an incident lens to generate a first current depending on a color, a first measuring unit configured to measure the first current, a sub-detecting unit having a dark detecting unit disposed adjacent to the main detecting unit and blocking the light to generate a second current in a dark state, a second measuring unit configured to measure the second current, a leakage measuring unit including a charging unit provided in the second measuring unit and charged with a predetermined set current, and measures a third current leaking from the charging unit, and a control unit that corrects the first current by reflecting the second current and the third current.
Abstract:
A method and system for performing color print quality monitoring for a color printing process, the method includes determining a calibration distance (ZCAL) between a Spectrophotometer (140) and an associated calibration patch (310) that provides a maximum luminescence value (LMAX) detected by the Spectrophotometer. The Spectrophotometer (140) or patch distance (Z1) between the Spectrophotometer and a color calibration patch (320) printed on a sheet (155) is determined from a first maximum color patch luminescence value (L1). A first color reading of the color calibration patch is taken and a second color patch distance (Z2) between the Spectrophotometer and a different area of the color calibration patch (320) is determined to provide a second maximum color patch luminescence value (L2). A second color reading of the color calibration patch is taken and compared with the first color reading to determine if the printing process needs adjusting.
Abstract:
A color measurement device acquires an image of a relative position calibration chart. The relative position calibration chart includes a calibration figure having a given calibration feature that has a position that is detectable along at least one of a first and a second direction. A color measurement of the relative position calibration chart is performed. Relative position relationship-related information is derived based on the calibration feature in the image of the relative position calibration chart and the calibration feature in the color measurement of the relative position calibration chart. A color of each patch of a number of patches of a color chart is measured at a position corresponding to one of the patches while correcting the position of the patch based on the position relationship-related information.
Abstract:
A spectroscopic camera includes a wavelength variable interference filter, and an image sensor that receives light which is transmitted through the wavelength variable interference filter. Measurement is implemented a plurality of times by causing measurement light to be incident to the wavelength variable interference filter and changing the wavelength of light that is transmitted by the wavelength variable interference filter. Reflectance based on the intensity of light when a first pixel of the image sensor receives light of a target wavelength, is predicted in the respective plurality of repetitions of measurement on the basis of a light reception central wavelength of light that the first pixel receives, and reflectance that is calculated on the basis of the intensity of light that is received by the first pixel.
Abstract:
A measuring apparatus and a measuring method are provided. The measuring apparatus includes an optical system to condense light, a light receiving device to receive light condensed by the optical system at a plurality of light receiving positions and convert the light into an electric signal, a plurality of optical band-pass filters arranged near a lens stop of the optical system, each of the optical band-pass filters having a different spectral transmittance, a lens array arranged between the optical system and the light receiving device, the lens array having a plurality of lenses each of which is arranged substantially in parallel with a two-dimensional surface of the light receiving device, and a correction unit to correct the electric signal for each one of the plurality of light receiving positions of the light receiving device. The measuring method is performed by the measuring apparatus.
Abstract:
In one aspect, a spectrometer insert is provided. The spectrometer insert includes: an enclosed housing; a first transparent window on a first side of the enclosed housing; a second transparent window on a second side of the enclosed housing, wherein the first side and the second side are opposing sides of the enclosed housing; and a sample mounting and heating assembly positioned within an interior cavity of the enclosed housing in between, and in line of sight of, the first transparent window and the second transparent window. A method for using the spectrometer insert to locally heat a sample so as to measure temperature-dependent optical properties of the sample is also provided.
Abstract:
A spectrometry device includes a spectroscope, an extraneous light sensor, and a light intensity controller. The spectroscope includes a light source that emits illumination light to a medium and a wavelength-selective interference filter that performs spectroscopy on light incident from the medium. The extraneous light sensor detects the intensity of extraneous light which is incident on the medium. The light intensity controller controls the intensity of the illumination light emitted from the light source such that the light intensity ratio of the illumination light and the extraneous light is equal to a first value.
Abstract:
Included are embodiments for a color calibration device formed from a flexible, elongate strip of material that is formable into a headband. The color calibration device includes a first color correction region comprising a plurality of color chips and a second color correction region comprising a plurality of color chips, wherein the first color correction region and the second color correction region are positioned on opposite sides of a mid-point of the flexible, elongate strip of material.
Abstract:
A color measurement system laterally determines chromatic characteristics of a printed substrate. A measurement carriage includes a measurement head for laterally moving across the printed substrate and a measurement magnetic coupler slidably mounts onto a measurement rail positioned on a first side of the printed substrate. A backing carriage includes backing surface(s) and backing magnetic coupler(s). Each backing magnetic coupler is associated with a respective backing surface. Each backing magnetic coupler can be coupled with the measurement magnetic coupler for coupling the measurement carriage with the backing carriage. The backing carriage slidably mounts onto a backing rail positioned on a second opposite side of the printed substrate. The measurement carriage or backing carriage includes a motor for moving across a respective measurement rail or backing rail. Another measurement carriage and backing carriage move across another measurement rail and backing rail by coupling with the first measurement carriage and backing carriage.