Abstract:
A computer controlled fluorometer device and method of operating same, said device being made to include a pump flash source and a probe flash source and one or more sample chambers in combination with a light condenser lens system and associated filters and reflectors and collimators, as well as signal conditioning and monitoring means and a programmable computer means and a software programmable source of background irradiance that is operable according to the method of the invention to rapidly, efficiently and accurately measure photosynthetic activity by precisely monitoring and recording changes in fluorescence yield produced by a controlled series of predetermined cycles of probe and pump flashes from the respective probe and pump sources that are controlled by the computer means.
Abstract:
An arrangement for in situ determination of the quantity of turbid matter, aerosol and/or dust in flue gas which flows through a flue by measurement of intensity of light irradiated by means of an optical transmitter in the flue, and dispersed on solid or fluid dispersion particles. The dispersion light is detected by a detector which is arranged outside of the bundle of rays of the transmitter and provided with a wide angle focusing optic. A woodsche horn absorbs the not dispersed part of the bundle of rays of the transmitter. The light source of the transmitter is formed as a xenon spark discharger with intensity maximum in the region of 350-600 nm, the detector signal is evaluated by an evaluating electronic circuit. The arrangement determines extremely low quantities of harmful matter.
Abstract:
An extinct type detector which detects and determines a concentration or density of a gas or vapor in a space on the basis of an attenuation of light due to the gas or vapor present within the space.The detector of this feature of the invention operates in such a way that the light emitting device is periodically driven to effect light emission, the first and the second photodetector devices receive the light from said light emitting device, the first and second storage means corresponding to the first and the second photodetector devices, respectively, cumulatively store the outputs from the respective photodetector devices, a difference in cumulative storage values between the first and the second storage means is detected to determine a concentration and density of the gas or vapor within the detecting space based on the detected difference.
Abstract:
A spectrophotometer (10) is provided having the capability to accurately measure spectral reflectance at relatively long sample distances. A first illumination optics arrangement (14) assures uniform illumination to a portion of the sample and a second optical arrangement (20) focuses the reflected image of part of the illuminated sample onto a polychromator (22). Reference beam means are provided so that the polychromator sequentially measures the spectral characteristics of the reference beam and the sample. Continuous monitoring of the illumination at select wavelengths provides illumination normalization data so that a microprocessor (40) can normalize the illumination and compare the reference beam and sample measurements to accurately determine the spectral reflectance characteristics of the sample. Angular and raster scanning capability is also provided.
Abstract:
An optical transmission factor is measured by using mutual measuring technology having a pair of identical units (44, 50) located on opposite sides of an object (A). Each of said units (44, 50) comprises a pair of beam splitters (47, 48), a light source means (45, 46) for illuminating an object (A) through a first beam splitter (47) and providing offset beam (56) from said first beam splitter (47), a photo-detector (49) for converting optical power from the other unit (50) and said offset beam (56), wherein each of said beam splitters (47, 48) is substantially in parallelogram shape with two pairs of confronting planes (24, 25; and 22, 23), first pairs of planes (24, 25) are not perpendicular to the second pair of planes (22, 23), one of first pair of planes (24) is mirror coated for reflecting the inside beam, so that split beams (29, 31) from single beam (27) share a common point (200) on the plane ( 23). Thus, a dust/soil free measurement with no mechanically moving means is accomplished.
Abstract:
A light emitting unit and a photo sensing unit are separately arranged to face with each other, and a pulse light is emitted from the light emitting unit at every constant period, and the photo sensing unit receives the pulse light attenuated by a smoke, thereby detecting a fire. When a power source is turned on, a microcomputer in the photo sensing unit stores the first photo sensing data as an initial photo sensing data in a memory. The initial photo sensing data is fixedly stored and held and is not erased due to a temporary cut off of the power source. The photo sensing data is converted to correction photo sensing data using a correction ratio to perform the fouling correction and the fire is discriminated on the basis of the correction photo sensing data. The correction ratio is corrected when the correction period reaches 50 minutes. A correction amount of a single correction ratio is suppressed to a microvalue. In correction of the correction ratio, it is increased or decreased by only a microvalue at every correction period until the photo sensing data coincides with the initial photo sensing data.
Abstract:
It has been shown that the use of a shutter to cut off the light beam entering the optical system of a fluoresence spectrophotometer will reduce UV deterioration of the components in the optical system. This invention discloses how control of the output of the light source by lowering its arc current when the shutter is closed can add significant improvement to the functioning of such a shutter system.
Abstract:
Fluorescent materials such as certain metal ores are detected under ambient light conditions by observing the material through a gated aperture which is opened at predetermined intervals for periods of predetermined duration while simultaneously exposing the material to periodic pulses of fluorescent stimulating light. The frequency of the light pulse is synchronized with the frequency of the opening of the gated aperture so that the aperture is open for at least a portion of the period during which fluorescence is produced by the stimulating light pulse. Electro-optic goggles are a preferred type of gated aperture.
Abstract:
Apparatus usable as a fluorometer for measuring the concentration of fluorescent material in a specimen employs a flashing lamp to illuminate the specimen with excitation radiation. The intensity of the fluorescence emitted by the specimen is therefore modulated at the flash rate. That modulated fluorescence is converted by a photodetector to an electrical signal. The electrical signal is amplified and is passed through a phase sensitive detector to an integrator. The phase sensitive detector is regulated to operate at a rate related to the flash rate whereby an appropriately rectified signal is fed to the integrator. When the specimen has been subjected to a selected amount of excitation radiation, a signal is generated which marks the end of the integration interval. The accumulated signal in the integrator is then measured to obtain a measurement of the quantity of fluorescent material in the specimen. The apparatus is also usable as a nephelometer to measure the light scattering properties of a specimen illuminated by the flashing lamp.
Abstract:
An optical spectral sensing system that provides a full-range mid-IR FTIR based measurement for gases and vapors. The system features a small interferometer module which is integrated with a sample cell and solid-state source, that has an optimized optical path matched to the intended concentration ranges for the gas/vapor measurements. The concentration ranges targeted are from % level for high targeted gas concentrations, as provided by short-pathlength gas cells, to parts-per-million (ppm) and for certain gases high parts-per-billion (ppb) for low trace targeted gas concentrations, provided by long-pathlength gas cells. The optics and opto-mechanical components selected are able to provide a spectral range of 400 cm−1 to 5000 cm−1, with nominal spectral resolutions of 4 cm−1 to 16 cm−1, with the potential to extend the resolution from 2 cm−1 out to 32 cm−1. The electronics are optimized to support both the range and spectral resolution based the use of a “universal” mid-IR detector.