Abstract:
Signal wiring conductors are provided at opposing positions on the upper surface of the uppermost dielectric layer and on the lower surface of the bottommost dielectric layer, and grounding conductors surrounding grounding-conductor non-forming areas are provided on the upper surfaces of intermediate dielectric layers and the bottommost dielectric layer. These grounding conductors form an electromagnetically shielded space by being connected by grounding-conductor via conductors vertically penetrating the respective dielectric layers around the grounding-conductor non-forming areas, and signal via conductors are so provided in the respective dielectric layers as to penetrate this electromagnetically shielded space. A signal via conductor of the uppermost dielectric layer is connected with the signal wiring conductor on the upper surface thereof via a signal-wiring connecting conductor, and a signal via conductor of the bottommost dielectric layer is connected with the signal wiring conductor on the lower surface thereof via a signal-wiring connecting conductor.
Abstract:
A mounting pad provided on an insulating substrate and comprising an electrically conductive pattern electrically joined with an electronic component and/or a bonding wire connected to an electronic component. The electrically conductive pattern comprises a plurality of metalized layers stacked on one another. By this structure, an electrically conductive adhesive for joining electronic components with mounting pads can be prevented from flowing out from the joining section therebetween to prevent a short-circuit of the mounting pads, or to prevent an interference with the wire-bonding by covering the bonding area.
Abstract:
A multi-layer circuit board having apertures that are selectively and electrically isolated from electrically grounded member and further having selectively formed air bridges and/or crossover members which are structurally supported by a polymeric material. Each of the apertures selectively receives an electrically conductive material.
Abstract:
An object of the present invention is to provide a radio frequency integrated circuit module that is less susceptible to the electromagnetic influence and that is not degraded in electric connection. The radio frequency circuit module of the present invention including circuit elements mounted on a multi-layer circuit substrate having dielectric layers is characterized in that an exposed connection portion is provided by removing a part of the dielectric, and a strip line connected to said circuit elements and a co-axial line for transmitting a radio frequency signal from/to said strip line are connected together in a bottom portion of said exposed connection portion so as to be rectilinear in a three dimensional way.
Abstract:
A printed circuit board (PCB) assembly comprising a PCB having a top circuitry layer and a bottom layer with a hole through the PCB, a component, and a pallet. The printed circuit board manufactured by a method including forming a hole through the top circuitry layer and the bottom layer, attaching the bottom layer to a pallet, placing the component in the hole, and soldering the component to the top circuitry layer and to the pallet.
Abstract:
A mounted circuit substrate has at least one conductive layer. The side faces of a component mounting pad is formed on a surface of the substrate, and includes at least a columnar pattern made of a metal highly resistant to erosion by solder. The side faces of the component mounting pad are completely covered with an organic insulating layer. Therefore, the component mounting pad can withstand molten solder stresses accompanying component replacement even when component replacement is done many times.
Abstract:
To provide a printed wiring board where the impedance between pads through which differential signals pass has been set to a predetermined standard value. The printed wiring board includes a first conductor layer extending over an area excluding a hole formed for each pad group and filled with a dielectric, and a second conductor layer extending over an area containing areas facing the hole. The hole encompasses a plurality of areas facing predetermined respective pads which are adjacent to each other and which form the pad group from among the plurality of pads.
Abstract:
A metal core substrate comprises a core layer (10) consisting of first and second metal plates (11, 12) layered with a third insulating layer (13) interposed therebetween; first and second insulating layers (20, 21) formed on the first and metal plates, respectively; first and second wiring patterns (45, 46) formed on the first and second insulating layers, respectively. A conductive layer (40) formed in a through-hole (22) penetrates the first insulating layer, the first metal plate, the third insulating layer, the second metal plate and the second insulating layer for electrically connecting the first wiring pattern with the second wiring pattern. The first metal plate (11) is electrically connected with the first wiring pattern (45) and the second wiring pattern (46), respectively, by means of a via (44) and by means a via (43). The second metal plate (12) is electrically connected with the second wiring pattern (46) and the first wiring pattern (45), respectively, by means of a via (42) and by means a via (41), respectively.
Abstract:
A method for making a multi-layer circuit board 116 having apertures 96, 98 which may be selectively and electrically isolated from electrically grounded member 46 and further having selectively formed air bridges and/or crossover members 104 which are structurally supported by material 112. Each of the apertures 96, 98 selectively receives electrically conductive material 114.
Abstract:
A method 10, 90 for making a multi-layer electronic circuit board 82, 168 including the steps of forming at least one protuberance 15, 100 upon an electrically conductive member 12, 92 and adding additional electrically conductive layers of material 34, 56, 58, 104, 114, 138, 140 to the member 12, 92 while selectively extending the protuberance 15, 100 within the layers 82, 168, thereby forming a circuit board 82, 168. A portion of the formed circuit board may be etched in order to selectively create air-bridges 86 or interconnection portions 164.