Abstract:
A wiring substrate includes an insulating layer, a first wiring layer and a second wiring layer on opposite sides of the insulating layer, and a via piercing through the first wiring layer and the insulating layer to electrically connect to the second wiring layer. The via includes an end portion projecting from a first surface of the first wiring layer facing away from the insulating layer. A surface of the end portion facing in the same direction as the first surface of the first wiring layer is depressed to be deeper in the center than in the periphery.
Abstract:
A control circuit board includes first and second elements on each surface of a board member. The first and the second elements respectively have first and third edge portions, which are opposite to each other and second and fourth edge portions which are opposite to each other. A plurality of signal input pins are provided to the first edge portion, a plurality of signal output pins are provided to the third edge portion, a plurality of between-element communication input pins are provided to the second edge portion, and a plurality of between-element communication output pins are provided to the fourth edge portion, respectively. A common signal is input to the first and second elements and a communication is performed between the first element and the second element. Loss of control function can be surely prevented while suppressing enlargement of the board and increase of development/production cost.
Abstract:
An electronic control unit includes a substrate, an electronic component, a heat sink, a cover, a heat accumulator, and a screw. A wiring pattern is formed on the substrate. The electronic component is mounted on the substrate and generates heat upon energization thereof. The heat sink is provided on one side of the substrate in its thickness direction. The cover is made of resin and is provided on the other side of the substrate in its thickness direction. The heat accumulator is fixed to a part of the cover on the substrate-side and is in contact with a surface of the substrate on the cover-side. One end of the screw is connected to the heat sink. A central portion of the screw is inserted through a hole passing through the substrate in its thickness direction. The other end of the screw is connected to the heat accumulator.
Abstract:
An electronic component is described which includes a first transistor encased in a first package, the first transistor being mounted over a first conductive portion of the first package, and a second transistor encased in a second package, the second transistor being mounted over a second conductive portion of the second package. The component further includes a substrate comprising an insulating layer between a first metal layer and a second metal layer. The first package is on one side of the substrate with the first conductive portion being electrically connected to the first metal layer, and the second package is on another side of the substrate with the second conductive portion being electrically connected to the second metal layer. The first package is opposite the second package, with at least 50% of a first area of the first conductive portion being opposite a second area of the second conductive portion.
Abstract:
Provided is a printed circuit board including a base substrate, first row pads, and second row pads. The base substrate has two sides, that can be adjacent, respectively extending in first and second directions. A plurality of pad group areas successively positioned along the first direction are defined on the base substrate. The first row pads are respectively disposed within the pad group areas and successively positioned along a third direction. The second row pads are respectively disposed within the pad group areas, successively positioned along the third direction, and spaced apart from the first row pads. Each of the second row pads is a predetermined distance from a corresponding one of the first row pads in the second direction.
Abstract:
An electronic apparatus includes a user interface to receive an input selecting a plurality of circuit devices, a storage to store electrical current information and a Scattering parameter regarding input/output ports of the plurality of circuit devices, respectively, a calculator to calculate impedance per number of de-coupling capacitors based on the stared S-parameters and to calculate an accumulated noise value per number of the decoupling capacitors based on the calculated impedance and the electrical current information, and a controller to determine a number of the de-coupling capacitors based on the calculated accumulated noise values and to control the user interface to display the determined number of the de-coupling capacitors.
Abstract:
A printed wiring board has thereon an electronic component having a heat radiation pad, and an electrolytic capacitor provided for the electronic component. The printed wiring board further has thereon another electronic component having another heat radiation pad and exhibiting a higher heat value than that of the electronic component, and another electrolytic capacitor provided for the other electronic component. The heat radiation pad of the electronic component, a ground terminal of the electrolytic capacitor, the other heat radiation pad for the other electronic component, and another ground terminal of the other electrolytic capacitor are connected by using a ground conductor. In the ground conductor, a thermal resistance between the other heat radiation pad and other ground terminal is lower than the thermal resistance between the heat radiation pad and the ground terminal.
Abstract:
An optoelectronic assembly includes a printed circuit board (PCB) defining opposite upper and lower surfaces, and equipped, on the upper surface, with an active component and an Integrated Circuit (IC) linked to each other via the flip chip technology, a lens module located on the side of the lower surface and communicating with the active component through via holes in the PCB, and a fiber assembly located in the lens module to be optically coupled to the active component via said lens module.
Abstract:
Embodiments are directed to microfluidic refill cartridges and methods of assembling same. The microfluidic refill cartridges include a microfluidic delivery member that includes a filter for filtering fluid passed therethrough. The filter may be configured to block particles above a threshold size to prevent blockage in the nozzles. For instance, particles having a dimension that is larger than the diameter of the nozzles can block or reduce fluid flow through the nozzle.
Abstract:
A printed wiring board includes a first conductive layer, a second conductive layer arranged at a gap with respective to the first conductive layer, a third conductive layer, a first via conductor and a second via conductor, and a third signal wiring pattern. A first signal wiring pattern is arranged on the first conductive layer, a second signal wiring pattern is arranged on the second conductive layer, and a third signal wiring pattern that is arranged on the third conductive layer. The third conductive layer is arranged between the first conductive layer and the second conductive layer via an insulating layer. The first via conductor and the second via conductor, which are arranged to be mutually adjacent, connect the first signal wiring pattern to the second signal wiring pattern. The third signal wiring pattern connects the first via conductor to the second via conductor.