Abstract:
In at least one embodiment, a vehicle power module comprises a first printed circuit board (PCB) including a first plurality of electrical components for providing a first voltage and a second voltage. The vehicle power module further comprises a second PCB including a second plurality of electrical components, the second PCB being spaced away from the first printed circuit board and a first connector assembly being coupled to the first PCB and to the second PCB for providing the first voltage to the second PCB. The vehicle power module further comprises a second connector assembly being coupled to the first PCB and to the second PCB for providing the second voltage to the second PCB. The first connector assembly provides the first voltage of up to 14V and the second connector assembly provides the second voltage of 200V or greater.
Abstract:
The printed circuit board (1) has a front face (2) which can be fitted with at least one semiconductor light source (4) and at least one mounting element (6) which is accessible via a rear face (3), wherein the at least one mounting element (6) is in the form of an electrical conduction element for at least one of the semiconductor light sources (4). The support has at least one support area (12) on which the printed circuit board (1) can be placed, wherein at least one mating mounting element (13) for respectively mounting a mounting element (6) of the printed circuit board (1) is arranged on the support area (12), and wherein at least one mating mounting element (13) is an electrically conductive mating mounting element (13) which is connected to at least one electrical power supply. In the system (10) comprising the printed circuit board (1) and the support (11), the printed circuit board (1) is mounted on the support (11) by the at least one mounting element (6) of the printed circuit board (1) engaging in an interlocking and/or force-fitting maimer in a respectively matching mating mounting element (13) of the support (11). The method is used to mount the printed circuit board (1) on the support (11).
Abstract:
In at least one embodiment, a vehicle power module comprises a first printed circuit board (PCB) including a first plurality of electrical components for providing a first voltage and a second voltage. The vehicle power module further comprises a second PCB including a second plurality of electrical components, the second PCB being spaced away from the first printed circuit board and a first connector assembly being coupled to the first PCB and to the second PCB for providing the first voltage to the second PCB. The vehicle power module further comprises a second connector assembly being coupled to the first PCB and to the second PCB for providing the second voltage to the second PCB. The first connector assembly provides the first voltage of up to 14V and the second connector assembly provides the second voltage of 200V or greater.
Abstract:
An apparatus is disclosed that may include a printed circuit board (PCB) and an electronics package may be disposed about the first surface of the PCB. The PCB may include a metal layer and a core, and, in some aspects, may include multiple cores interposed between multiple metal layers, and in some embodiments a backplane may be disposed along the core. The metal layer may be disposed on a core first surface. The metal layer may comprise metal or other conductive material suitable to define traces, which may be circuit paths for electronic components affixed to the PCB. In some aspects, the core may be electrically non-conducting, and may be thermally insulating, and, accordingly, inhibit the transfer of heat from the electronics package through the PCB. However, pins may be configured to pass through the PCB including the core from the core first surface to the core second surface to conduct heat generated by the electronics package away for dispersion. In some embodiments, the pins may pass into the backplane. A pad may be disposed between the electronic package and the core in some embodiments, the pins passing into the pad.
Abstract:
There is disclosed an electronic testbed, an electronic testbed board, and a method for positioning receptacles for nails in the electronic testbed board. In an embodiment, the electronic testbed board includes a mounting through-hole for mounting a receptacle for a nail. The mounting through-hole is drilled to a suitably precise diameter for mounting the receptacle substantially perpendicular to the testbed board. One or more via-holes are located adjacent the mounting through-hole, and are adapted to allow an electrical connection between any conductive layers provided at the one or more via-holes. The receptacle may be mounted more accurately and the electronic test bed may be built more accurately by separating the functions of the via-holes and the mounting through-hole.
Abstract:
A semiconductor device includes wiring boards each having an insulating board, conductor circuits and through-holes, the insulating board having top and bottom surfaces, the conductor circuits formed on the top and bottom surfaces, the through holes penetrating the insulating board and electrically connecting the conductor circuits of the top and bottom surfaces; conductor posts each having flange, head and leg portions, the flange portion having first and second surfaces and having an external diameter larger than that of the through-hole, the head portion protruding from the first surface, the leg portion protruding from the second surface; and electronic components each having an electrode formed on one or more surfaces and connected to the leg portion. The head portion is inserted until the first surface of the flange portion comes into contact with the bottom surface of the wiring board and electrically connected at an inner wall of the through-hole.
Abstract:
A wiring structure includes a board assembly and pin terminals. In each of pin terminal insertion holes formed in the board assembly, a terminal connection portion electrically connected to a metal foil wire and fitted onto the pin terminal so as to hold the pin terminal is provided in a through-hole of at least one of a plurality of circuit boards forming the board assembly, which forms a part of the pin terminal insertion hole, whereas an insulating sleeve blocking contact between the pin terminal and each of the remaining circuit boards is fitted into through-holes of the remaining circuit boards, which form the remaining part of the pin terminal insertion hole.
Abstract:
A feed-through capacitor is constructed in a printed wiring board using alternating layers of metal capacitive layers and plastic dielectric layers of the printed wiring board. The large number of layers, the avoidance of ceramic layers and the flexible geometry of this device allow it to be used in many applications, particularly in those involving high power high current. Also, because it utilizes a printed wiring board, the capacitor can be made in numerous sizes and shapes.
Abstract:
An electronic product having a double-PCB sandwich structure includes a PCB assembly, and a casing having an open side. The electronic product is configured such that a protuberance is respectively formed on the inner sides of two side walls of the casing in the longitudinal direction, the PCB assembly comprises an electronic component, a base PCB and a main PCB, the length of the base PCB and the length of the main PCB in the longitudinal direction of the casing are substantially equal to each other and slightly smaller than the length of the casing so that the PCB assembly can be installed into the casing by mating with the protuberances.
Abstract:
Embodiments of the present technique are directed to a backplane infrastructure. The backplane infrastructure may include a passive power backplane configured to distribute power and comprising a first set of alignment holes, a signal backplane configured to route interface signals and comprising a second set of alignment holes and a set of common alignment pins, each alignment pin having an axis, wherein the set of common alignment pins are inserted into the first set of alignment holes and the second set of alignment holes to align the passive power backplane and the signal backplane about the axis.