Abstract:
In a film substrate (FB) including a film base material (1) and conductor wiring (23) that is formed on the film base material (1), the conductor wiring (23) is arranged such that the conductor wiring thickness of an external connection portion on the film substrate to which another panel or substrate is connected is thicker than the conductor wiring thickness of conductor wiring portions (bent portions) (25) at other positions.
Abstract:
A method for manufacturing a semiconductor device that includes mounting a semiconductor chip on a circuit board having an insulating substrate, a plurality of wiring layers arranged on the insulating substrate, and bumps formed on the wiring layers respectively, in which the bump is provided across a longitudinal direction of a corresponding one of the wiring layers so as to extend over regions on both sides of the wiring layer and contact a surface of the insulating substrate, without a stepped portion formed on a surface of the bump, and a cross sectional shape of the bump taken in a width direction of the wiring layer is such that a central portion is higher than both side portions. The method also includes connecting electrode pads of the semiconductor chip to the bumps, thereby achieving connection between the electrode pads of the semiconductor chip and the wiring layers via the bumps.
Abstract:
A spool of a lock-up control valve has a first effective area exposed to a release pressure which is supplied to a release chamber of the lock-up clutch and a second larger effective area which is exposed to the apply pressure which is supplied to an apply chamber. When acceleration is demanded when the lock-up clutch is in one of slip or fully lock-up modes and a sudden demand for acceleration is made, the pressure differential between the apply and release pressures is reduced below the normal level for a predetermined period of time.
Abstract:
In a film substrate (FB) including a film base material (1) and conductor wiring (23) that is formed on the film base material (1), the conductor wiring (23) is arranged such that the conductor wiring thickness of an external connection portion on the film substrate to which another panel or substrate is connected is thicker than the conductor wiring thickness of conductor wiring portions (bent portions) (25) at other positions.
Abstract:
The electronic device includes: a heat sink including a front surface having a concave portion; a heat conductive component placed in the concave portion, in contact with the heat sink; a semiconductor element placed in the concave portion, in contact with the heat conductive component; a flexible base plate electrically connected to the semiconductor element and placed on the surface of the heat sink; and a chassis member having a front surface on which the heat sink is fixed so as to come in contact with the heat sink at the back surface opposite to the front surface.
Abstract:
A scroll fluid machine comprises compression chambers defined with an orbiting scroll orbiting relative to a fixed scroll, and a back pressure chamber provided on the face opposite from a wrap of the orbiting scroll. A back pressure port is provided, which is formed in an end-plate of the orbiting scroll and connects from a compression chamber side opening opened to a compression chamber side and to a back pressure chamber side opening opened to a back pressure chamber side. The compression chamber side opening is opened and closed by an end-plate of the fixed scroll according as the orbiting motion of the orbiting scroll to perform connection and blockage of the back pressure port. The flow resistance of fluid flowing in and out between the back pressure chamber and the compression chamber is reduced and the compression efficiency and reliability are improved.
Abstract:
A circuit board including a flexible insulating substrate, a plurality of conductive wirings placed in line on the flexible insulating substrate, and bumps provided at end portions of the respective conductive wirings positioned in a region for mounting a semiconductor chip is provided. The circuit board further includes an auxiliary conductive wiring positioned at an outermost corner of the region for mounting the semiconductor chip, being adjacent to and an outside the outermost conductive wiring, and an auxiliary bump formed on the auxiliary conductive wiring in line with the bumps on the conductive wirings. One end portion of the auxiliary conductive wiring is terminated at a position in the outside vicinity of the auxiliary bump in an outward direction of the region for mounting the semiconductor chip, and the auxiliary conductive wiring is bent at the other end portion positioned inside the auxiliary bump in an inward direction of the region for mounting the semiconductor chip, and connected to an end of the adjacent outermost conductive wiring. A break in the outermost conductive wiring, which is caused by concentrated stress at the time of joining the bumps of the circuit board and electrode pads of the semiconductor chip, can be suppressed.
Abstract:
A circuit board including a flexible insulating substrate, a plurality of conductive wirings placed in line on the flexible insulating substrate, and bumps provided at end portions of the respective conductive wirings positioned in a region for mounting a semiconductor chip is provided. The circuit board further includes an auxiliary conductive wiring positioned at an outermost corner of the region for mounting the semiconductor chip, being adjacent to and an outside the outermost conductive wiring, and an auxiliary bump formed on the auxiliary conductive wiring in line with the bumps on the conductive wirings. One end portion of the auxiliary conductive wiring is terminated at a position in the outside vicinity of the auxiliary bump in an outward direction of the region for mounting the semiconductor chip, and the auxiliary conductive wiring is bent at the other end portion positioned inside the auxiliary bump in an inward direction of the region for mounting the semiconductor chip, and connected to an end of the adjacent outermost conductive wiring. A break in the outermost conductive wiring, which is caused by concentrated stress at the time of joining the bumps of the circuit board and electrode pads of the semiconductor chip, can be suppressed.
Abstract:
A circuit board includes a film substrate, a plurality of wiring layers arranged in order on the film substrate, and bumps formed on the wiring layers, respectively. Each of the bumps is provided across a longitudinal direction of a corresponding one of the wiring layers so as to extend over regions on both sides of the wiring layer above the insulating substrate, and a cross sectional shape of the bump taken in the width direction of the wiring layer is such that a central portion is higher than portions on both sides of the central portion. Accordingly, the bumps formed on the wiring layers can be held with strength sufficient for practical use against the force applied in the lateral direction.
Abstract:
A wiring board includes: an insulating base; a plurality of conductive wirings; and bumps formed on the conductive wirings, respectively. The conductive wirings can be connected with electrode pads of a semiconductor element via the bumps. The conductive wirings include a connection terminal portion at an end portion opposite to the other end portion where the bumps are formed, and at the connection terminal portion, the conductive wirings can be connected with an external component. The conductive wirings include first conductive wirings and second conductive wirings, on which the bumps are formed respectively at a semiconductor element mounting region. The first conductive wirings extend from the bumps to the connection terminal portion. The second conductive wirings extend beyond the semiconductor element mounting region from the bumps but do not reach the connection terminal portion. End portions of the second conductive wirings extending beyond the semiconductor element mounting region are separated electrically from the first conductive wirings by a cutting portion formed at a boundary region with the first conductive wirings. Irrespective of the state of operating electrode pads of a semiconductor element to be mounted, the bumps can be arranged at constant intervals.