Abstract:
The present invention relates to a structured monolayer that is composed of low-molecular aromatics and fully cross-linked in the lateral direction, the monolayer having a pattern of functional groups on one of the two surfaces, and to a method for preparing such a structured monolayer, as well as to the use thereof.
Abstract:
A method for producing a film of vanadium pentoxide nanowires having improved alignment is provided. The method comprises the steps of a) preparing a solution of vanadium pentoxide (V2O5) nanowires by a sol-gel method; b) diluting the solution of vanadium pentoxide nanowires with water and feeding the dilute aqueous solution into a Langmuir-Blodgett trough; c) adding a dispersant to the dilute aqueous solution of vanadium pentoxide nanowires; d) diluting a solution of a dioctadecyldimethylammonium halide with an organic solvent, applying the dioctadecyldimethylammonium halide solution to the surface of the dilute aqueous solution of vanadium pentoxide nanowires in the Langmuir-Blodgett trough, and allowing the solutions to stand to disperse the dioctadecyldimethylammonium halide solution in the Langmuir-Blodgett trough; e) controlling the surface pressure of the dioctadecyldimethylammonium halide solution using barriers mounted on the Langmuir-Blodgett trough; f) affixing a substrate to a dipping arm of the Langmuir-Blodgett trough and bringing the substrate into contact with the surface of the dioctadecyldimethylammonium halide solution; and g) separating the substrate from the dipping arm. According to the method, the alignment of the nanowires can be markedly improved by sol-gel synthesis, the need for subsequent washing can be eliminated, which contributes to the simplification of the production process, and the nanowires can be cut to desired lengths in a simple manner, thereby ensuring the reproducibility of a device using the nanowire film and achieving improved characteristics of the device. Further provided are a vanadium pentoxide nanowire film produced by the method and a nanowire device comprising the nanowire film. The nanowire device can find application in various fields, including field effect transistors and a variety of sensors, due to its excellent characteristics and reproducibility.
Abstract:
A method and an apparatus (10) for making thin layers from particles, wherein the particles are deposited on a carrier fluid flowing by gravity along a ramp (12) leading to a dam (18). The particles are held back at the bottom of the ramp (12), thereby causing the particles to be piled up one against the other in a monolayer configuration.
Abstract:
A molecule for Langmuir-Blodgett (LB) deposition of a molecular layer. The molecule includes at least one switching moiety, a hydrophilicity-modifiable connecting group attached to one end of the moiety, and a hydrophilicity-non-modifiable connecting group attached to the other end of the moiety. The hydrophilicity-modifiable connecting group is transformable to a temporary end group upon adjustment in pH of the aqueous environment containing the molecule. The temporary end group is more hydrophilic than the hydrophilicity-modifiable connecting group and the hydrophilicity-non-modifiable connecting group. The difference in hydrophilicity between the temporary end group and the hydrophilicity-non-modifiable connecting group causes formation of a substantially well-oriented, uniform LB film at a water/solvent and/or water/air interface.
Abstract:
A method is provided for monitoring and controlling the deposition of multiple layer thin films using a broadband spectral monitor and a generalized model of the film. A design specification, including the number of layers and the material, refractive index, and thickness of each layer, is provided for the desired thin film. A target optical thickness is computed for the end point of each layer using correction factors based on the generalized model, preferably a single layer model, of the multilayer thin film. A monitor chip, such as a silicon substrate, is used for monitoring the multiple layers of film deposition. During deposition of the film, a broadband spectral monitor (BBSM) comprising a source of broadband light is directed onto the monitoring chip. Light reflected by the monitoring chip is received by a photosensor that provides a broadband reflectance spectrum to a computer. The BBSM reflectance spectrum is fit to the generalized model to produce an output corresponding to the optical thickness of the deposited film. When the broadband spectral monitor optical thickness measurement equals the target optical thickness at the end point of the layer, deposition of that layer is terminated and deposition of the next layer may commence. This process is repeated during the deposition of each successive layer until the entire multiple layer thin film is complete.
Abstract:
A device for coating semiconductor/semiconductor precursor particles on a flexible substrate and a preparation method of a semiconducting thin film, wherein the device includes: a container for a first and second solvent substantially immiscible; injection means for injecting a predetermined dispersion volume of at least one layered semiconductor particle material or its precursor(s), occurring at a liquid-liquid interface formed within the container and between the first and second solvent, and creating a particle film at the liquid-liquid interface; a first support means; substrate extracting means; substrate supply means; compression means, reducing a distance between particles and push the film onto the substrate, wherein the compression means includes several pushing means mounted on a drive device, wherein at least two of the several pushing means are at least partially submerged in the second solvent during drive device rotation, and moved through the second solvent toward the first support means.
Abstract:
This invention relates to method and system for forming a film. The method including providing a trough containing water defining an air-water interface between air and the water; providing a solution containing a material of interest; and electrospraying the solution onto the air-water interface of water to form a film of the material of interest at the air-water interface. The system includes a trough containing water defining an air-water interface between air and the water; and means for spreading a solution containing a material of interest onto the air-water interface of water by electrospray, to form a film of the material of interest at the air-water interface. The spreading means comprises an electrospraying device.
Abstract:
To provide a fluorinated ether compound, a fluorinated ether composition and a coating liquid, whereby it is possible to form a surface-treated layer which has high initial water/oil repellency and which is excellent in abrasion resistance and fingerprint stain removability, and a substrate having a surface-treated layer and a method for its production.A fluorinated ether compound which has a poly(oxyperfluoroalkylene) chain ((αβ)n) made of at least two units (αβ) linked to one another, and which has a hydrolysable silyl group on at least one terminal of the chain ((αβ)n) via a linking group, wherein each unit (αβ) is a poly(oxyperfluoroalkylene) group comprising one to three groups (α) made of at least one type of a C1-2 oxyperfluoroalkylene group and one to three groups (β) made of at least one type of a C3-6 oxyperfluoroalkylene group.
Abstract:
An installation for forming a compact film of particles on a surface of a carrier fluid, including: a zone acting as a reservoir of carrier fluid; an inclined ramp; a particle storage and transfer zone situated extending from the inclined ramp; a mechanism moving the fluid; a mechanism dispensing the particles in solution, configured to dispense the particles at the surface of the carrier on the surface of the carrier fluid in the zone acting as a reservoir; and a mechanism raising a level of the carrier fluid by capillary effect, arranged at a junction between the zone acting as a reservoir and the inclined ramp.
Abstract:
The invention provides materials and methods for forming coatings on substrates. The coatings are durable and resistant to damage from environmental, chemical, thermal, and/or radiative sources. In some embodiments, the coatings comprise bilayers of electrostatically charged materials. The bilayers are created by alternately applying solutions comprising water-soluble, electrostatically charged materials. Durability is imparted to the coatings by the formation of crosslinks that are formed within and between layers after deposition of the coatings.