Abstract:
Various embodiments are described herein for nanostructure field emission cathode structures and methods of making these structures. These structures generally comprise an electrode field emitter comprising a resistive layer having a first surface, a connection pad having a first surface disposed adjacent to the first surface of the resistive layer, and a nanostructure element for emitting electrons in use, the nanostructure element being disposed adjacent to a second surface of the connection pad that is opposite the first surface of the connection pad. Some embodiments also include a coaxial gate electrode that is disposed about the nanostructure element.
Abstract:
Various embodiments are described herein for nanostructure field emission cathode structures and methods of making these structures. These structures generally comprise an electrode field emitter comprising a resistive layer having a first surface, a connection pad having a first surface disposed adjacent to the first surface of the resistive layer, and a nanostructure element for emitting electrons in use, the nanostructure element being disposed adjacent to a second surface of the connection pad that is opposite the first surface of the connection pad. Some embodiments also include a coaxial gate electrode that is disposed about the nanostructure element.
Abstract:
An exemplary electron emission device includes an electron emitter, an anode opposite to and spaced apart from the electron emitter, a first power supply circuit, and a second power supply circuit. The first power supply circuit is configured for electrically connecting the electron emitter and the anode with a power supply to generate an electric field between the electron emitter and the anode. The second power supply circuit is configured for electrically connecting the electron emitter with a power supply to supply a heating current for heating the electron emitter whereby electrons emit therefrom. Methods for generating an emission current with a relatively higher stability also are provided.
Abstract:
Electron emitters and methods of fabricating the electron emitters are disclosed. According to certain embodiments, an electron emitter includes a tip with a planar region having a diameter in a range of approximately (0.05-10) micrometers. The electron emitter tip is configured to release field emission electrons. The electron emitter further includes a work-function-lowering material coated on the tip.
Abstract:
Methods of producing microrods for electron emitters and associated microrods and electron emitters. In one example, a method of producing a microrod for an electron emitter comprises providing a bulk crystal ingot, removing a first plate from the bulk crystal ingot, reducing a thickness of the first plate to produce a second plate, and milling the second plate to produce one or more microrods. In another example, a microrod for an electron emitter comprises a microrod tip region that comprises a nanoneedle that in turn comprises a nanorod and a nanoprotrusion tip. The microrod and the nanoneedle are integrally formed from a bulk crystal ingot by sequentially: (i) removing the microrod from the bulk crystal ingot; (ii) coarse processing the microrod tip region to produce the nanorod; and (iii) fine processing the nanorod to produce the nanoprotrusion tip.
Abstract:
The present disclosure relates to a method for preparing a molybdenum disulfide film used in a field emission device, including: providing a sulfur vapor; blowing the sulfur vapor into a reaction chamber having a substrate and MoO3 powder to generate a gaseous MoOx; feeding the sulfur vapor into the reaction chamber sequentially, heating the reaction chamber to a predetermined reaction temperature and maintaining for a predetermined reaction time, and then cooling the reaction chamber to a room temperature and maintaining for a second reaction time to form a molybdenum disulfide film on the surface of the substrate, in which the molybdenum disulfide film grows horizontally and then grows vertically. The method according to the present disclosure is simple and easy, and the field emission property of the MoS2 film obtained is good.
Abstract:
The present invention relates to a conductive nanostructure, a method for molding the same, and a method for manufacturing a field emitter using the same. More particularly, the present invention relates to a field-emitting nanostructure comprising a conductive substrate, a conductive nanostructure arranged on the conductive substrate, and a conductive interfacial compound disposed in the interface between the conductive substrate and the conductive nanostructure, as well as to a method for molding the same, and a method for manufacturing a field emitter using the same.
Abstract:
Described here is a method for performing phase contrast imaging using an array of independently controllable x-ray sources. The array of x-ray sources can be controlled to produce a distinct spatial pattern of x-ray radiation and thus can be used to encode phase contrast signals without the need for a coded aperture. The lack of coded aperture increases the flexibility of the imaging method. For instance, because a fixed, coded aperture is not required, the angular resolution of the imaging technique can be increased as compared to coded-aperture imaging. Moreover, the lack of a radioopaque coded aperture increases the photon flux that reaches the subject, thereby increasing the attainable signal-to-noise ratio.
Abstract:
A field electron emitter including a metal electrode; and a plurality of carbon nanotubes, wherein a portion of the plurality of carbon nanotubes protrude from a surface of the metal electrode and a portion of the plurality of carbon nanotubes are in the metal electrode. Also disclosed is a field electron emission device including the field electron emitter and a method of manufacturing the field electron emitter.