Abstract:
Substrate processing systems, such as ion implantation systems, deposition systems and etch systems, having textured silicon liners are disclosed. The silicon liners are textured using a chemical treatment that produces small features, referred to as micropyramids, which may be less than 20 micrometers in height. Despite the fact that these micropyramids are much smaller than the textured features commonly found in graphite liners, the textured silicon is able to hold deposited coatings and resist flaking. Methods for performing preventative maintenance on these substrate processing systems are also disclosed.
Abstract:
Positive ions that fly within an ion acceleration tube are accelerated by a plurality of acceleration electrodes arranged within the ion acceleration tube and are irradiated to an irradiation target. A plurality of magnet devices is arranged within the ion acceleration tube; the directions of the lines of magnetic force formed respectively by the magnet devices are made to differ between the adjacent magnet devices by an angle of more than 0 degree and at most 90 degrees or less; and each of the lines of magnetic force is rotated in one direction within the ion acceleration tube. Electrons travelling in reverse within the ion acceleration tube are made to intersect the lines of magnetic force, and made to increase a distance from a flying axis while traveling in reverse. Since the electrons collide with members within the ion acceleration tube and stop before having high energy, high-energy X-rays are not generated.
Abstract:
A device for mass selective determination of at least one ion or of a plurality of ions is used, for example, in a measuring apparatus having an ion trap. The ion trap has a ring electrode having a first opening. A first electrode is arranged at the first opening. Furthermore, an amplifier for providing a radio-frequency storage signal for the ion trap and a first transformer are provided, said first transformer being connected to the amplifier and the first electrode in such a way that the radio-frequency storage signal is coupled into the first electrode via the first transformer.
Abstract:
Components in an ion implanter that may see incidence of the ion beam include a chamber having an elongate slot opening defined by edges so that a central portion of the ion beam enters the component through the opening with the edges clipping at least a peripheral portion of the ion beam. The arrangement mitigates the problem of sputtered material escaping back out from the component and becoming entrained in the ion beam.
Abstract:
A technique for improved ion beam transport is disclosed. In one particular exemplary embodiment, the technique may be realized as an ion implantation system comprising an ion source for generating an ion beam, a mass analyzer for selecting a desired ion species from ion particles the ion beam, an ion decelerator configured to reduce an energy of ions in the ion beam, an end station for supporting at least one workpiece to be implanted with ions from the ion beam, and a neutral particle separator configured to remove neutrally-charged particles from the ion beam prior to reaching the ion decelerator.
Abstract:
A system, method, and apparatus for mitigating contamination associated with ion implantation are provided. An ion source, end station, and mass analyzer positioned between the ion source and the end station are provided, wherein an ion beam is formed from the ion source and selectively travels through the mass analyzer to the end station, based on a position of a beam stop assembly. The beam stop assembly selectively prevents the ion beam from entering and/or exiting the mass analyzer, therein minimizing contamination associated with an unstable ion source during transition periods such as a start-up of the ion implantation system.
Abstract:
An apparatus and method for trapping particles in a housing is disclosed. A high voltage terminal/structure is situated within a housing. A conductive material, having a plurality of holes, such as a mesh, is disposed a distance away from an interior surface of the housing, such as the floor of the housing, forming a particle trap. The conductive mesh is biased so that the electrical field within the trap is either non-existent or pushing toward the floor, so as to retain particles within the trap. Additionally, a particle mover, such as a fan or mechanical vibration device, can be used to urge particles into the openings in the mesh. Furthermore, a conditioning phase may be used prior to operating the high voltage terminal, whereby a voltage is applied to the conductive mesh so as to attract particles toward the particle trap.
Abstract:
An ion implanter includes an ion source for generating an ion beam moving along a beam line and a vacuum or implantation chamber wherein a workpiece, such as a silicon wafer is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. A liner has an interior facing surface that bounds at least a portion of the evacuated interior region and that comprises grooves spaced across the surface of the liner to capture contaminants generated within the interior region during operation of the ion implanter.
Abstract:
In a high-sensitivity X-ray detector, an image of the secondary electrons is little shifted and deformed by the astigmatism or the like even when it approaches very close to a specimen set on the stage of an electron microscope. When a beam of charged particles strike a specimen, the specimen emits backscattered charged particles along with X-rays. To prevent such undesired charged particles from entering into the X-ray detecting element of the X-ray detector, a means for generating a first magnetic field is applied. Another means for generating a second magnetic field is provided to cancel the magnetic filed leaked from the first means for generating magnetic field at the position of the specimen.
Abstract:
A mass analysis magnet assembly (16) is provided for use in an ion implanter (10), comprising: (i) a magnet (44) for mass analyzing an ion beam (15) output by an ion source (14), the magnet providing an interior region (49) through which the ion beam passes; and (ii) at least one strike plate (48) in part forming an outer boundary of the interior region (49). The at least one strike plate is comprised of an isotopically pure carbon-based material. The isotopically pure carbon-based material, preferably by mass greater than 99% carbon C-12, prevents neutron radiation when impacted by deuterons extracted from the ion source (14). The strike plate (48) may comprise an upper layer (56) of isotopically pure carbon C-12 isotope positioned atop a lower substrate (54).