Abstract:
An apparatus and method for performing mass spectroscopy uses an ion interface to provide the function of removing undesirable particulates from an ion stream from an atmospheric pressure ion source, such as an electrospray source or a MALDI source, before the ion stream enters a vacuum chamber containing the mass spectrometer. The ion interface includes an entrance cell with a bore that may be heated for desolvating charged droplets when the ion source is an electrospray source, and a particle discrimination cell with a bore disposed downstream of the bore of the entrance cell and before an aperture leading to the vacuum chamber. The particle discrimination cell creates gas dynamic and electric field conditions that enables separation of undesirable charged particulates from the ion stream.
Abstract:
The invention relates to methods and instruments for ionizing analyte molecules, preferably biomolecules, which are dissolved in liquids or firmly adsorbed on surfaces. Liquids are nebulized at atmospheric pressure by electrospraying. Highly charged microdroplets, which enter the vacuum of the mass spectrometer through the inlet capillary, strike an impact plate when energy is fed in. The repulsive Coulomb force of the charges, the absorption of additional thermal energy and/or the conversion of their kinetic energy into thermal energy cause the microdroplets to burst and evaporate. Analyte molecules which are located in the nebulized liquid or on the impact plate are released in charged form and can be fed to the mass spectrometer for analysis by the extraction and collection effect of an ion funnel operated with RF and DC voltages.
Abstract:
In a mass spectrometer utilizing an atmospheric pressure ion source, the amount of un-vaporized droplets that reach a mass spectrometric section is reduced. A mass spectrometer comprises: an ionization section for ionizing a sample at substantially atmospheric pressure; a first and a second intermediate pressure section in which the pressure is maintained lower than the pressure in said ionization section; a high vacuum section in which the pressure is maintained lower than the pressure in said intermediate pressure section and in which a mass spectrometric means for subjecting ions to mass spectrometry is disposed; a first pore electrode disposed between said ionization section and said first intermediate pressure section; an intermediate pore electrode disposed between said first intermediate pressure section and said second intermediate pressure section; and a second pore electrode disposed between said second intermediate pressure section and said high vacuum section. A first converging electrode is provided in the first intermediate pressure section, the first converging electrode having an opening towards the first pore electrode and another opening towards the intermediate pore electrode. The opening towards the first pore electrode has a larger diameter than the opening towards the intermediate pore electrode, such that the first converging electrode has a tapered shape.
Abstract:
A high voltage ion propulsion field is applied across the length of an ion mobility spectrometer that is divided by a barrier wall into a desolvation region and a drift tube. A plume of ions and solvent is electrosprayed into the desolvation region, and ions are propelled from the desolvation region through the drift tube to an ion target. Drift gas flows through the drift tube in the opposite direction to oppose the ion flow. A portal in the barrier wall permits ions to move from the desolvation region into the drift tube, and restricts flow of drift gas from the drift tube into the desolvation region. The resulting drift gas velocity increase effects desolvation without requiring elevated temperature or decreased pressure. An ion gate is located near the portal and an aperture grid is located near the ion target. The drift gas flow rate is varied to change the ionization spectra to alter selectivity.
Abstract:
A mass spectrometer in which, in order to reduce noise due to other particles (large charge droplets, neutral particles, photons, or the like), the orbit of ions and the orbit of other particles are separated from each other in the inside of a mass analysis region so as to make it possible to prevent the other particles from reaching an ion detection region without using any deflector.
Abstract:
In the operation of a ion trap mass spectrometer, a high temperature gas at about 300.degree. C. is introduced as a buffer gas. As a result, water molecules absorbed on the inner wall of the quadrupole electrodes of the ion trap mass spectrometer are desorbed and evacuated. Further, the quadrupole electrodes themselves and vacuum chamber are also heated. As the high temperature gas is introduced into the ion trap space, the time necessary for evacuating the ion trap space is shortened and the noise during the measurement time is effectively reduced. During the measurement time, the temperature is controlled to be low, and the thermal degradation of the sample is prevented.
Abstract:
A novel atmospheric pressure ionization device for the transport of charged particle produced by at atmospheric pressure to a mass analyzer includes a liquid shield between the particle source and the sample inlet into the mass analyzer. The liquid shield may be in the form of a disk with a central aperture and acts as a spray splitter and aerofocusing device which increases the flow rate of a liquid sample into the analyzer. The mass analyzer is located in a high vacuum region and an intermediate low vacuum region is provided between the sample inlet and the analyzer. An ion optical system includes electrostatic lens assemblies in said vacuum regions for transporting charged particles from the inlet to the analyzer.
Abstract:
In an ionization device for an ionization chamber (11) separated from an analysis chamber (12-14) by a partition wall having an ion introduction port (113), an ionization probe (111) sprays a liquid sample. A heated-gas supply mechanism (112), which includes a gas supply source and a heating section (1122) for heating a gas supplied from the gas supply source, expels the gas in a direction intersecting with the direction in which the liquid sample is sprayed from the ionization probe. A controller (32) controls an operation of the heated-gas supply mechanism so that the gas is continuously expelled from the heated-gas supply mechanism regardless of the presence or absence of an operation by a user while the liquid sample is sprayed from the ionization probe. The continuous expulsion of the gas from the heated-gas supply mechanism prevents this mechanism from being contaminated by the sprayed liquid.
Abstract:
A liquid sample analyzing system including an ion analyzer having a first ion source receiving a target sample and a second ion source receiving a reference sample; a liquid sample introduction mechanism 3 including a passage-switching section introducing reference samples into the second ion source; and a controller for repeatedly performing a series of steps in the ion analyzer, the steps including: a pre-measurement step for initiating a measurement; a measurement step for introducing a target sample into the first ion source and performing a measurement on an ion originating from the target sample along with an ion originating from a reference sample introduced into the second ion source by the liquid sample introduction mechanism; and a post-measurement step where the liquid sample introduction mechanism operates concurrently with the predetermined post-measurement step to switch the passage-switching section to a passage having a reference sample for the next analysis.
Abstract:
A method is disclosed comprising providing a biological sample on a swab, directing a spray of charged droplets onto a surface of the swab in order to generate a plurality of analyte ions, and analysing the analyte ions.